Properties

Label 132.3.g.a
Level 132132
Weight 33
Character orbit 132.g
Analytic conductor 3.5973.597
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [132,3,Mod(67,132)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("132.67");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 132=22311 132 = 2^{2} \cdot 3 \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 132.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.596739489563.59673948956
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,11)\Q(\sqrt{-3}, \sqrt{-11})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11)q2+β1q3+(2β12)q4+(β2+1)q5+(β13)q6+(3β3β1)q7+8q83q9+(3β3β2+β11)q10++3β3q99+O(q100) q + (\beta_1 - 1) q^{2} + \beta_1 q^{3} + ( - 2 \beta_1 - 2) q^{4} + (\beta_{2} + 1) q^{5} + ( - \beta_1 - 3) q^{6} + ( - 3 \beta_{3} - \beta_1) q^{7} + 8 q^{8} - 3 q^{9} + ( - 3 \beta_{3} - \beta_{2} + \beta_1 - 1) q^{10}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q28q4+4q512q6+32q812q94q10+24q12+20q13+12q1432q1680q17+12q188q20+12q21+36q2520q2624q28++212q98+O(q100) 4 q - 4 q^{2} - 8 q^{4} + 4 q^{5} - 12 q^{6} + 32 q^{8} - 12 q^{9} - 4 q^{10} + 24 q^{12} + 20 q^{13} + 12 q^{14} - 32 q^{16} - 80 q^{17} + 12 q^{18} - 8 q^{20} + 12 q^{21} + 36 q^{25} - 20 q^{26} - 24 q^{28}+ \cdots + 212 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4x32x23x+9 x^{4} - x^{3} - 2x^{2} - 3x + 9 : Copy content Toggle raw display

β1\beta_{1}== (ν3+2ν22ν6)/3 ( \nu^{3} + 2\nu^{2} - 2\nu - 6 ) / 3 Copy content Toggle raw display
β2\beta_{2}== (2ν3+2ν2+10ν+3)/3 ( -2\nu^{3} + 2\nu^{2} + 10\nu + 3 ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν3+4 -\nu^{3} + 4 Copy content Toggle raw display
ν\nu== (β3+β2β1+1)/4 ( -\beta_{3} + \beta_{2} - \beta _1 + 1 ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (β3+β2+5β1+5)/4 ( \beta_{3} + \beta_{2} + 5\beta _1 + 5 ) / 4 Copy content Toggle raw display
ν3\nu^{3}== β3+4 -\beta_{3} + 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/132Z)×\left(\mathbb{Z}/132\mathbb{Z}\right)^\times.

nn 1313 6767 8989
χ(n)\chi(n) 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
67.1
−1.18614 + 1.26217i
1.68614 0.396143i
−1.18614 1.26217i
1.68614 + 0.396143i
−1.00000 1.73205i 1.73205i −2.00000 + 3.46410i −4.74456 −3.00000 + 1.73205i 11.6819i 8.00000 −3.00000 4.74456 + 8.21782i
67.2 −1.00000 1.73205i 1.73205i −2.00000 + 3.46410i 6.74456 −3.00000 + 1.73205i 8.21782i 8.00000 −3.00000 −6.74456 11.6819i
67.3 −1.00000 + 1.73205i 1.73205i −2.00000 3.46410i −4.74456 −3.00000 1.73205i 11.6819i 8.00000 −3.00000 4.74456 8.21782i
67.4 −1.00000 + 1.73205i 1.73205i −2.00000 3.46410i 6.74456 −3.00000 1.73205i 8.21782i 8.00000 −3.00000 −6.74456 + 11.6819i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 132.3.g.a 4
3.b odd 2 1 396.3.g.a 4
4.b odd 2 1 inner 132.3.g.a 4
8.b even 2 1 2112.3.l.a 4
8.d odd 2 1 2112.3.l.a 4
12.b even 2 1 396.3.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.3.g.a 4 1.a even 1 1 trivial
132.3.g.a 4 4.b odd 2 1 inner
396.3.g.a 4 3.b odd 2 1
396.3.g.a 4 12.b even 2 1
2112.3.l.a 4 8.b even 2 1
2112.3.l.a 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T522T532 T_{5}^{2} - 2T_{5} - 32 acting on S3new(132,[χ])S_{3}^{\mathrm{new}}(132, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
33 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
55 (T22T32)2 (T^{2} - 2 T - 32)^{2} Copy content Toggle raw display
77 T4+204T2+9216 T^{4} + 204T^{2} + 9216 Copy content Toggle raw display
1111 (T2+11)2 (T^{2} + 11)^{2} Copy content Toggle raw display
1313 (T210T8)2 (T^{2} - 10 T - 8)^{2} Copy content Toggle raw display
1717 (T2+40T+268)2 (T^{2} + 40 T + 268)^{2} Copy content Toggle raw display
1919 T4+816T2+147456 T^{4} + 816 T^{2} + 147456 Copy content Toggle raw display
2323 T4+924T2+69696 T^{4} + 924 T^{2} + 69696 Copy content Toggle raw display
2929 (T256T+652)2 (T^{2} - 56 T + 652)^{2} Copy content Toggle raw display
3131 T4+3552T2+1937664 T^{4} + 3552 T^{2} + 1937664 Copy content Toggle raw display
3737 (T2+20T428)2 (T^{2} + 20 T - 428)^{2} Copy content Toggle raw display
4141 (T2+4T4748)2 (T^{2} + 4 T - 4748)^{2} Copy content Toggle raw display
4343 T4+3552T2+1937664 T^{4} + 3552 T^{2} + 1937664 Copy content Toggle raw display
4747 T4+2268T2+419904 T^{4} + 2268 T^{2} + 419904 Copy content Toggle raw display
5353 (T226T128)2 (T^{2} - 26 T - 128)^{2} Copy content Toggle raw display
5959 T4+7344T2+11943936 T^{4} + 7344 T^{2} + 11943936 Copy content Toggle raw display
6161 (T2+2T2672)2 (T^{2} + 2 T - 2672)^{2} Copy content Toggle raw display
6767 (T2+3888)2 (T^{2} + 3888)^{2} Copy content Toggle raw display
7171 T4+7548T2+3968064 T^{4} + 7548 T^{2} + 3968064 Copy content Toggle raw display
7373 (T2124T908)2 (T^{2} - 124 T - 908)^{2} Copy content Toggle raw display
7979 T4+21804T2+35426304 T^{4} + 21804 T^{2} + 35426304 Copy content Toggle raw display
8383 (T2+5808)2 (T^{2} + 5808)^{2} Copy content Toggle raw display
8989 (T2+292T+20788)2 (T^{2} + 292 T + 20788)^{2} Copy content Toggle raw display
9797 (T2304T+21916)2 (T^{2} - 304 T + 21916)^{2} Copy content Toggle raw display
show more
show less