Properties

Label 132.3.g.a
Level $132$
Weight $3$
Character orbit 132.g
Analytic conductor $3.597$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [132,3,Mod(67,132)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(132, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("132.67");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 132 = 2^{2} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 132.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59673948956\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + \beta_1 q^{3} + ( - 2 \beta_1 - 2) q^{4} + (\beta_{2} + 1) q^{5} + ( - \beta_1 - 3) q^{6} + ( - 3 \beta_{3} - \beta_1) q^{7} + 8 q^{8} - 3 q^{9} + ( - 3 \beta_{3} - \beta_{2} + \beta_1 - 1) q^{10}+ \cdots + 3 \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{4} + 4 q^{5} - 12 q^{6} + 32 q^{8} - 12 q^{9} - 4 q^{10} + 24 q^{12} + 20 q^{13} + 12 q^{14} - 32 q^{16} - 80 q^{17} + 12 q^{18} - 8 q^{20} + 12 q^{21} + 36 q^{25} - 20 q^{26} - 24 q^{28}+ \cdots + 212 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -2\nu^{3} + 2\nu^{2} + 10\nu + 3 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{3} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_{2} - \beta _1 + 1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + \beta_{2} + 5\beta _1 + 5 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} + 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/132\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(67\) \(89\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−1.18614 + 1.26217i
1.68614 0.396143i
−1.18614 1.26217i
1.68614 + 0.396143i
−1.00000 1.73205i 1.73205i −2.00000 + 3.46410i −4.74456 −3.00000 + 1.73205i 11.6819i 8.00000 −3.00000 4.74456 + 8.21782i
67.2 −1.00000 1.73205i 1.73205i −2.00000 + 3.46410i 6.74456 −3.00000 + 1.73205i 8.21782i 8.00000 −3.00000 −6.74456 11.6819i
67.3 −1.00000 + 1.73205i 1.73205i −2.00000 3.46410i −4.74456 −3.00000 1.73205i 11.6819i 8.00000 −3.00000 4.74456 8.21782i
67.4 −1.00000 + 1.73205i 1.73205i −2.00000 3.46410i 6.74456 −3.00000 1.73205i 8.21782i 8.00000 −3.00000 −6.74456 + 11.6819i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 132.3.g.a 4
3.b odd 2 1 396.3.g.a 4
4.b odd 2 1 inner 132.3.g.a 4
8.b even 2 1 2112.3.l.a 4
8.d odd 2 1 2112.3.l.a 4
12.b even 2 1 396.3.g.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
132.3.g.a 4 1.a even 1 1 trivial
132.3.g.a 4 4.b odd 2 1 inner
396.3.g.a 4 3.b odd 2 1
396.3.g.a 4 12.b even 2 1
2112.3.l.a 4 8.b even 2 1
2112.3.l.a 4 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2T_{5} - 32 \) acting on \(S_{3}^{\mathrm{new}}(132, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 2 T - 32)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} + 204T^{2} + 9216 \) Copy content Toggle raw display
$11$ \( (T^{2} + 11)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 10 T - 8)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 40 T + 268)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 816 T^{2} + 147456 \) Copy content Toggle raw display
$23$ \( T^{4} + 924 T^{2} + 69696 \) Copy content Toggle raw display
$29$ \( (T^{2} - 56 T + 652)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 3552 T^{2} + 1937664 \) Copy content Toggle raw display
$37$ \( (T^{2} + 20 T - 428)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 4748)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 3552 T^{2} + 1937664 \) Copy content Toggle raw display
$47$ \( T^{4} + 2268 T^{2} + 419904 \) Copy content Toggle raw display
$53$ \( (T^{2} - 26 T - 128)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 7344 T^{2} + 11943936 \) Copy content Toggle raw display
$61$ \( (T^{2} + 2 T - 2672)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 3888)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 7548 T^{2} + 3968064 \) Copy content Toggle raw display
$73$ \( (T^{2} - 124 T - 908)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 21804 T^{2} + 35426304 \) Copy content Toggle raw display
$83$ \( (T^{2} + 5808)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 292 T + 20788)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 304 T + 21916)^{2} \) Copy content Toggle raw display
show more
show less