Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [132,3,Mod(67,132)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(132, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("132.67");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 132.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
67.1 |
|
−1.00000 | − | 1.73205i | − | 1.73205i | −2.00000 | + | 3.46410i | −4.74456 | −3.00000 | + | 1.73205i | 11.6819i | 8.00000 | −3.00000 | 4.74456 | + | 8.21782i | |||||||||||||||||||||
67.2 | −1.00000 | − | 1.73205i | − | 1.73205i | −2.00000 | + | 3.46410i | 6.74456 | −3.00000 | + | 1.73205i | − | 8.21782i | 8.00000 | −3.00000 | −6.74456 | − | 11.6819i | |||||||||||||||||||||
67.3 | −1.00000 | + | 1.73205i | 1.73205i | −2.00000 | − | 3.46410i | −4.74456 | −3.00000 | − | 1.73205i | − | 11.6819i | 8.00000 | −3.00000 | 4.74456 | − | 8.21782i | ||||||||||||||||||||||
67.4 | −1.00000 | + | 1.73205i | 1.73205i | −2.00000 | − | 3.46410i | 6.74456 | −3.00000 | − | 1.73205i | 8.21782i | 8.00000 | −3.00000 | −6.74456 | + | 11.6819i | |||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 132.3.g.a | ✓ | 4 |
3.b | odd | 2 | 1 | 396.3.g.a | 4 | ||
4.b | odd | 2 | 1 | inner | 132.3.g.a | ✓ | 4 |
8.b | even | 2 | 1 | 2112.3.l.a | 4 | ||
8.d | odd | 2 | 1 | 2112.3.l.a | 4 | ||
12.b | even | 2 | 1 | 396.3.g.a | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
132.3.g.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
132.3.g.a | ✓ | 4 | 4.b | odd | 2 | 1 | inner |
396.3.g.a | 4 | 3.b | odd | 2 | 1 | ||
396.3.g.a | 4 | 12.b | even | 2 | 1 | ||
2112.3.l.a | 4 | 8.b | even | 2 | 1 | ||
2112.3.l.a | 4 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .