L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.156 − 0.987i)3-s + (−0.587 − 0.809i)4-s + (0.156 − 0.987i)5-s + (−0.951 − 0.309i)6-s + (0.896 + 0.142i)7-s + (−0.987 + 0.156i)8-s + (−0.951 + 0.309i)9-s + (−0.809 − 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (0.533 − 0.734i)14-s − 15-s + (−0.309 + 0.951i)16-s + (−0.156 + 0.987i)18-s + ⋯ |
L(s) = 1 | + (0.453 − 0.891i)2-s + (−0.156 − 0.987i)3-s + (−0.587 − 0.809i)4-s + (0.156 − 0.987i)5-s + (−0.951 − 0.309i)6-s + (0.896 + 0.142i)7-s + (−0.987 + 0.156i)8-s + (−0.951 + 0.309i)9-s + (−0.809 − 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (0.533 − 0.734i)14-s − 15-s + (−0.309 + 0.951i)16-s + (−0.156 + 0.987i)18-s + ⋯ |
Λ(s)=(=(1320s/2ΓC(s)L(s)(−0.995+0.0965i)Λ(1−s)
Λ(s)=(=(1320s/2ΓC(s)L(s)(−0.995+0.0965i)Λ(1−s)
Degree: |
2 |
Conductor: |
1320
= 23⋅3⋅5⋅11
|
Sign: |
−0.995+0.0965i
|
Analytic conductor: |
0.658765 |
Root analytic conductor: |
0.811643 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1320(413,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1320, ( :0), −0.995+0.0965i)
|
Particular Values
L(21) |
≈ |
1.293897352 |
L(21) |
≈ |
1.293897352 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.453+0.891i)T |
| 3 | 1+(0.156+0.987i)T |
| 5 | 1+(−0.156+0.987i)T |
| 11 | 1+(−0.707+0.707i)T |
good | 7 | 1+(−0.896−0.142i)T+(0.951+0.309i)T2 |
| 13 | 1+(−0.587−0.809i)T2 |
| 17 | 1+(−0.587+0.809i)T2 |
| 19 | 1+(−0.309−0.951i)T2 |
| 23 | 1−iT2 |
| 29 | 1+(0.253−0.183i)T+(0.309−0.951i)T2 |
| 31 | 1+(−0.587−1.80i)T+(−0.809+0.587i)T2 |
| 37 | 1+(0.951+0.309i)T2 |
| 41 | 1+(0.309+0.951i)T2 |
| 43 | 1+iT2 |
| 47 | 1+(−0.951+0.309i)T2 |
| 53 | 1+(0.280−0.550i)T+(−0.587−0.809i)T2 |
| 59 | 1+(−1.04−1.44i)T+(−0.309+0.951i)T2 |
| 61 | 1+(−0.809−0.587i)T2 |
| 67 | 1+iT2 |
| 71 | 1+(0.809+0.587i)T2 |
| 73 | 1+(−0.309+1.95i)T+(−0.951−0.309i)T2 |
| 79 | 1+(−0.5−1.53i)T+(−0.809+0.587i)T2 |
| 83 | 1+(0.734+1.44i)T+(−0.587+0.809i)T2 |
| 89 | 1+T2 |
| 97 | 1+(1.76+0.896i)T+(0.587+0.809i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.304043539756123159121813115712, −8.643946271870561136163212080382, −8.128127597756525706585917678597, −6.82370383503027853585408188821, −5.84614363120418028573579428899, −5.21535077798277189477024831855, −4.34893624421944344836003945311, −3.08699768363626840554484186772, −1.80507312353087248848677387087, −1.09072612856837774498989076706,
2.41048268212136326529470636377, 3.66853739311702328132848032959, 4.30268763872519183977617838696, 5.18042097097884608939218214146, 6.06761955766815337044080302134, 6.81307415233890380188367944981, 7.73412055932866845395637101310, 8.453694666267075156775904370822, 9.566792617391321665404064092960, 9.926661367629454239054133172646