Properties

Label 1320.1.dk.a
Level 13201320
Weight 11
Character orbit 1320.dk
Analytic conductor 0.6590.659
Analytic rank 00
Dimension 1616
Projective image D20D_{20}
CM discriminant -24
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1320,1,Mod(173,1320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1320, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 10, 10, 15, 6]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1320.173");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1320=233511 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1320.dk (of order 2020, degree 88, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6587658166760.658765816676
Analytic rank: 00
Dimension: 1616
Relative dimension: 22 over Q(ζ20)\Q(\zeta_{20})
Coefficient field: Q(ζ40)\Q(\zeta_{40})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x16x12+x8x4+1 x^{16} - x^{12} + x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D20D_{20}
Projective field: Galois closure of Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == qζ4017q2+ζ40q3ζ4014q4+ζ4019q5ζ4018q6+(ζ4012ζ406)q7ζ4011q8+ζ402q9++ζ4017q99+O(q100) q - \zeta_{40}^{17} q^{2} + \zeta_{40} q^{3} - \zeta_{40}^{14} q^{4} + \zeta_{40}^{19} q^{5} - \zeta_{40}^{18} q^{6} + ( - \zeta_{40}^{12} - \zeta_{40}^{6}) q^{7} - \zeta_{40}^{11} q^{8} + \zeta_{40}^{2} q^{9} + \cdots + \zeta_{40}^{17} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q4q74q1016q15+4q16+4q224q2416q284q33+4q364q42+16q54+16q58+4q634q704q73+8q79+4q81+4q87+4q97+O(q100) 16 q - 4 q^{7} - 4 q^{10} - 16 q^{15} + 4 q^{16} + 4 q^{22} - 4 q^{24} - 16 q^{28} - 4 q^{33} + 4 q^{36} - 4 q^{42} + 16 q^{54} + 16 q^{58} + 4 q^{63} - 4 q^{70} - 4 q^{73} + 8 q^{79} + 4 q^{81} + 4 q^{87}+ \cdots - 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1320Z)×\left(\mathbb{Z}/1320\mathbb{Z}\right)^\times.

nn 661661 881881 991991 10571057 12011201
χ(n)\chi(n) 1-1 1-1 11 ζ4010-\zeta_{40}^{10} ζ404\zeta_{40}^{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
173.1
0.453990 0.891007i
−0.453990 + 0.891007i
−0.891007 + 0.453990i
0.891007 0.453990i
0.156434 + 0.987688i
−0.156434 0.987688i
−0.891007 0.453990i
0.891007 + 0.453990i
0.453990 + 0.891007i
−0.453990 0.891007i
−0.987688 + 0.156434i
0.987688 0.156434i
−0.987688 0.156434i
0.987688 + 0.156434i
0.156434 0.987688i
−0.156434 + 0.987688i
−0.987688 0.156434i 0.453990 0.891007i 0.951057 + 0.309017i −0.453990 0.891007i −0.587785 + 0.809017i −1.76007 + 0.896802i −0.891007 0.453990i −0.587785 0.809017i 0.309017 + 0.951057i
173.2 0.987688 + 0.156434i −0.453990 + 0.891007i 0.951057 + 0.309017i 0.453990 + 0.891007i −0.587785 + 0.809017i −1.76007 + 0.896802i 0.891007 + 0.453990i −0.587785 0.809017i 0.309017 + 0.951057i
293.1 −0.156434 0.987688i −0.891007 + 0.453990i −0.951057 + 0.309017i 0.891007 + 0.453990i 0.587785 + 0.809017i 0.142040 0.278768i 0.453990 + 0.891007i 0.587785 0.809017i 0.309017 0.951057i
293.2 0.156434 + 0.987688i 0.891007 0.453990i −0.951057 + 0.309017i −0.891007 0.453990i 0.587785 + 0.809017i 0.142040 0.278768i −0.453990 0.891007i 0.587785 0.809017i 0.309017 0.951057i
413.1 −0.453990 + 0.891007i 0.156434 + 0.987688i −0.587785 0.809017i −0.156434 + 0.987688i −0.951057 0.309017i 0.896802 + 0.142040i 0.987688 0.156434i −0.951057 + 0.309017i −0.809017 0.587785i
413.2 0.453990 0.891007i −0.156434 0.987688i −0.587785 0.809017i 0.156434 0.987688i −0.951057 0.309017i 0.896802 + 0.142040i −0.987688 + 0.156434i −0.951057 + 0.309017i −0.809017 0.587785i
437.1 −0.156434 + 0.987688i −0.891007 0.453990i −0.951057 0.309017i 0.891007 0.453990i 0.587785 0.809017i 0.142040 + 0.278768i 0.453990 0.891007i 0.587785 + 0.809017i 0.309017 + 0.951057i
437.2 0.156434 0.987688i 0.891007 + 0.453990i −0.951057 0.309017i −0.891007 + 0.453990i 0.587785 0.809017i 0.142040 + 0.278768i −0.453990 + 0.891007i 0.587785 + 0.809017i 0.309017 + 0.951057i
557.1 −0.987688 + 0.156434i 0.453990 + 0.891007i 0.951057 0.309017i −0.453990 + 0.891007i −0.587785 0.809017i −1.76007 0.896802i −0.891007 + 0.453990i −0.587785 + 0.809017i 0.309017 0.951057i
557.2 0.987688 0.156434i −0.453990 0.891007i 0.951057 0.309017i 0.453990 0.891007i −0.587785 0.809017i −1.76007 0.896802i 0.891007 0.453990i −0.587785 + 0.809017i 0.309017 0.951057i
677.1 −0.891007 0.453990i −0.987688 + 0.156434i 0.587785 + 0.809017i 0.987688 + 0.156434i 0.951057 + 0.309017i −0.278768 + 1.76007i −0.156434 0.987688i 0.951057 0.309017i −0.809017 0.587785i
677.2 0.891007 + 0.453990i 0.987688 0.156434i 0.587785 + 0.809017i −0.987688 0.156434i 0.951057 + 0.309017i −0.278768 + 1.76007i 0.156434 + 0.987688i 0.951057 0.309017i −0.809017 0.587785i
893.1 −0.891007 + 0.453990i −0.987688 0.156434i 0.587785 0.809017i 0.987688 0.156434i 0.951057 0.309017i −0.278768 1.76007i −0.156434 + 0.987688i 0.951057 + 0.309017i −0.809017 + 0.587785i
893.2 0.891007 0.453990i 0.987688 + 0.156434i 0.587785 0.809017i −0.987688 + 0.156434i 0.951057 0.309017i −0.278768 1.76007i 0.156434 0.987688i 0.951057 + 0.309017i −0.809017 + 0.587785i
1157.1 −0.453990 0.891007i 0.156434 0.987688i −0.587785 + 0.809017i −0.156434 0.987688i −0.951057 + 0.309017i 0.896802 0.142040i 0.987688 + 0.156434i −0.951057 0.309017i −0.809017 + 0.587785i
1157.2 0.453990 + 0.891007i −0.156434 + 0.987688i −0.587785 + 0.809017i 0.156434 + 0.987688i −0.951057 + 0.309017i 0.896802 0.142040i −0.987688 0.156434i −0.951057 0.309017i −0.809017 + 0.587785i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 173.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
24.h odd 2 1 CM by Q(6)\Q(\sqrt{-6})
3.b odd 2 1 inner
8.b even 2 1 inner
55.l even 20 1 inner
165.u odd 20 1 inner
440.bu even 20 1 inner
1320.dk odd 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1320.1.dk.a 16
3.b odd 2 1 inner 1320.1.dk.a 16
5.c odd 4 1 1320.1.dk.b yes 16
8.b even 2 1 inner 1320.1.dk.a 16
11.d odd 10 1 1320.1.dk.b yes 16
15.e even 4 1 1320.1.dk.b yes 16
24.h odd 2 1 CM 1320.1.dk.a 16
33.f even 10 1 1320.1.dk.b yes 16
40.i odd 4 1 1320.1.dk.b yes 16
55.l even 20 1 inner 1320.1.dk.a 16
88.p odd 10 1 1320.1.dk.b yes 16
120.w even 4 1 1320.1.dk.b yes 16
165.u odd 20 1 inner 1320.1.dk.a 16
264.u even 10 1 1320.1.dk.b yes 16
440.bu even 20 1 inner 1320.1.dk.a 16
1320.dk odd 20 1 inner 1320.1.dk.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1320.1.dk.a 16 1.a even 1 1 trivial
1320.1.dk.a 16 3.b odd 2 1 inner
1320.1.dk.a 16 8.b even 2 1 inner
1320.1.dk.a 16 24.h odd 2 1 CM
1320.1.dk.a 16 55.l even 20 1 inner
1320.1.dk.a 16 165.u odd 20 1 inner
1320.1.dk.a 16 440.bu even 20 1 inner
1320.1.dk.a 16 1320.dk odd 20 1 inner
1320.1.dk.b yes 16 5.c odd 4 1
1320.1.dk.b yes 16 11.d odd 10 1
1320.1.dk.b yes 16 15.e even 4 1
1320.1.dk.b yes 16 33.f even 10 1
1320.1.dk.b yes 16 40.i odd 4 1
1320.1.dk.b yes 16 88.p odd 10 1
1320.1.dk.b yes 16 120.w even 4 1
1320.1.dk.b yes 16 264.u even 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T78+2T77+2T764T7410T73+13T724T7+1 T_{7}^{8} + 2T_{7}^{7} + 2T_{7}^{6} - 4T_{7}^{4} - 10T_{7}^{3} + 13T_{7}^{2} - 4T_{7} + 1 acting on S1new(1320,[χ])S_{1}^{\mathrm{new}}(1320, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
33 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
55 T16T12++1 T^{16} - T^{12} + \cdots + 1 Copy content Toggle raw display
77 (T8+2T7+2T6++1)2 (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
1111 (T4+1)4 (T^{4} + 1)^{4} Copy content Toggle raw display
1313 T16 T^{16} Copy content Toggle raw display
1717 T16 T^{16} Copy content Toggle raw display
1919 T16 T^{16} Copy content Toggle raw display
2323 T16 T^{16} Copy content Toggle raw display
2929 T16+4T14++1 T^{16} + 4 T^{14} + \cdots + 1 Copy content Toggle raw display
3131 (T8+5T6+10T4+25)2 (T^{8} + 5 T^{6} + 10 T^{4} + 25)^{2} Copy content Toggle raw display
3737 T16 T^{16} Copy content Toggle raw display
4141 T16 T^{16} Copy content Toggle raw display
4343 T16 T^{16} Copy content Toggle raw display
4747 T16 T^{16} Copy content Toggle raw display
5353 T1611T12++1 T^{16} - 11 T^{12} + \cdots + 1 Copy content Toggle raw display
5959 T164T14++1 T^{16} - 4 T^{14} + \cdots + 1 Copy content Toggle raw display
6161 T16 T^{16} Copy content Toggle raw display
6767 T16 T^{16} Copy content Toggle raw display
7171 T16 T^{16} Copy content Toggle raw display
7373 (T8+2T7+7T6++1)2 (T^{8} + 2 T^{7} + 7 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
7979 (T42T3+4T2++1)4 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 1)^{4} Copy content Toggle raw display
8383 T16+4T12++1 T^{16} + 4 T^{12} + \cdots + 1 Copy content Toggle raw display
8989 T16 T^{16} Copy content Toggle raw display
9797 (T8+2T7+2T6++1)2 (T^{8} + 2 T^{7} + 2 T^{6} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less