L(s) = 1 | + (−0.891 + 0.453i)2-s + (−0.987 − 0.156i)3-s + (0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (0.951 − 0.309i)6-s + (−0.278 − 1.76i)7-s + (−0.156 + 0.987i)8-s + (0.951 + 0.309i)9-s + (−0.809 + 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (1.04 + 1.44i)14-s − 15-s + (−0.309 − 0.951i)16-s + (−0.987 + 0.156i)18-s + ⋯ |
L(s) = 1 | + (−0.891 + 0.453i)2-s + (−0.987 − 0.156i)3-s + (0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (0.951 − 0.309i)6-s + (−0.278 − 1.76i)7-s + (−0.156 + 0.987i)8-s + (0.951 + 0.309i)9-s + (−0.809 + 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (1.04 + 1.44i)14-s − 15-s + (−0.309 − 0.951i)16-s + (−0.987 + 0.156i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.358 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.358 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5940854089\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5940854089\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.891 - 0.453i)T \) |
| 3 | \( 1 + (0.987 + 0.156i)T \) |
| 5 | \( 1 + (-0.987 + 0.156i)T \) |
| 11 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 + (0.278 + 1.76i)T + (-0.951 + 0.309i)T^{2} \) |
| 13 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 17 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (1.59 + 1.16i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (-0.550 + 0.280i)T + (0.587 - 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.533 + 0.734i)T + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.309 + 0.0489i)T + (0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-1.44 - 0.734i)T + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.142 - 0.278i)T + (-0.587 + 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.756508717447543075869277740613, −9.060449035020681432458125306504, −7.88269216313074109571630422569, −7.04553011253285378843461139783, −6.54176371841342634559373284592, −5.79281944406938267424704133760, −4.89926076838182601509405921422, −3.68098010469237967677318537438, −1.76844140999423146916498328162, −0.800029324597765145306516479386,
1.66580690268341872690045934458, 2.43612280873596211089730418158, 3.80852664548412029012416337319, 5.23118167681473842782807437473, 5.92947495579690366744336659310, 6.61464658977865899115350525853, 7.48324054700217730759188024299, 8.833979538258478777478258335374, 9.390606703172755207168984430248, 9.750662304693277089962750727826