Properties

Label 2-1320-1320.893-c0-0-1
Degree $2$
Conductor $1320$
Sign $0.358 + 0.933i$
Analytic cond. $0.658765$
Root an. cond. $0.811643$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.891 + 0.453i)2-s + (−0.987 − 0.156i)3-s + (0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (0.951 − 0.309i)6-s + (−0.278 − 1.76i)7-s + (−0.156 + 0.987i)8-s + (0.951 + 0.309i)9-s + (−0.809 + 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (1.04 + 1.44i)14-s − 15-s + (−0.309 − 0.951i)16-s + (−0.987 + 0.156i)18-s + ⋯
L(s)  = 1  + (−0.891 + 0.453i)2-s + (−0.987 − 0.156i)3-s + (0.587 − 0.809i)4-s + (0.987 − 0.156i)5-s + (0.951 − 0.309i)6-s + (−0.278 − 1.76i)7-s + (−0.156 + 0.987i)8-s + (0.951 + 0.309i)9-s + (−0.809 + 0.587i)10-s + (0.707 − 0.707i)11-s + (−0.707 + 0.707i)12-s + (1.04 + 1.44i)14-s − 15-s + (−0.309 − 0.951i)16-s + (−0.987 + 0.156i)18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.358 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.358 + 0.933i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $0.358 + 0.933i$
Analytic conductor: \(0.658765\)
Root analytic conductor: \(0.811643\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1320} (893, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1320,\ (\ :0),\ 0.358 + 0.933i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5940854089\)
\(L(\frac12)\) \(\approx\) \(0.5940854089\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.891 - 0.453i)T \)
3 \( 1 + (0.987 + 0.156i)T \)
5 \( 1 + (-0.987 + 0.156i)T \)
11 \( 1 + (-0.707 + 0.707i)T \)
good7 \( 1 + (0.278 + 1.76i)T + (-0.951 + 0.309i)T^{2} \)
13 \( 1 + (0.587 - 0.809i)T^{2} \)
17 \( 1 + (0.587 + 0.809i)T^{2} \)
19 \( 1 + (-0.309 + 0.951i)T^{2} \)
23 \( 1 - iT^{2} \)
29 \( 1 + (1.59 + 1.16i)T + (0.309 + 0.951i)T^{2} \)
31 \( 1 + (0.587 - 1.80i)T + (-0.809 - 0.587i)T^{2} \)
37 \( 1 + (-0.951 + 0.309i)T^{2} \)
41 \( 1 + (0.309 - 0.951i)T^{2} \)
43 \( 1 + iT^{2} \)
47 \( 1 + (0.951 + 0.309i)T^{2} \)
53 \( 1 + (-0.550 + 0.280i)T + (0.587 - 0.809i)T^{2} \)
59 \( 1 + (-0.533 + 0.734i)T + (-0.309 - 0.951i)T^{2} \)
61 \( 1 + (-0.809 + 0.587i)T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 + (0.809 - 0.587i)T^{2} \)
73 \( 1 + (-0.309 + 0.0489i)T + (0.951 - 0.309i)T^{2} \)
79 \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \)
83 \( 1 + (-1.44 - 0.734i)T + (0.587 + 0.809i)T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (-0.142 - 0.278i)T + (-0.587 + 0.809i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.756508717447543075869277740613, −9.060449035020681432458125306504, −7.88269216313074109571630422569, −7.04553011253285378843461139783, −6.54176371841342634559373284592, −5.79281944406938267424704133760, −4.89926076838182601509405921422, −3.68098010469237967677318537438, −1.76844140999423146916498328162, −0.800029324597765145306516479386, 1.66580690268341872690045934458, 2.43612280873596211089730418158, 3.80852664548412029012416337319, 5.23118167681473842782807437473, 5.92947495579690366744336659310, 6.61464658977865899115350525853, 7.48324054700217730759188024299, 8.833979538258478777478258335374, 9.390606703172755207168984430248, 9.750662304693277089962750727826

Graph of the $Z$-function along the critical line