Properties

Label 1320.1.dk.a.893.1
Level $1320$
Weight $1$
Character 1320.893
Analytic conductor $0.659$
Analytic rank $0$
Dimension $16$
Projective image $D_{20}$
CM discriminant -24
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1320,1,Mod(173,1320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1320, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 10, 10, 15, 6]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1320.173");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1320.dk (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.658765816676\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{20})\)
Coefficient field: \(\Q(\zeta_{40})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} + x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{20}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{20} - \cdots)\)

Embedding invariants

Embedding label 893.1
Root \(-0.987688 - 0.156434i\) of defining polynomial
Character \(\chi\) \(=\) 1320.893
Dual form 1320.1.dk.a.677.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.891007 + 0.453990i) q^{2} +(-0.987688 - 0.156434i) q^{3} +(0.587785 - 0.809017i) q^{4} +(0.987688 - 0.156434i) q^{5} +(0.951057 - 0.309017i) q^{6} +(-0.278768 - 1.76007i) q^{7} +(-0.156434 + 0.987688i) q^{8} +(0.951057 + 0.309017i) q^{9} +(-0.809017 + 0.587785i) q^{10} +(0.707107 - 0.707107i) q^{11} +(-0.707107 + 0.707107i) q^{12} +(1.04744 + 1.44168i) q^{14} -1.00000 q^{15} +(-0.309017 - 0.951057i) q^{16} +(-0.987688 + 0.156434i) q^{18} +(0.453990 - 0.891007i) q^{20} +1.78201i q^{21} +(-0.309017 + 0.951057i) q^{22} +(0.309017 - 0.951057i) q^{24} +(0.951057 - 0.309017i) q^{25} +(-0.891007 - 0.453990i) q^{27} +(-1.58779 - 0.809017i) q^{28} +(-1.59811 - 1.16110i) q^{29} +(0.891007 - 0.453990i) q^{30} +(-0.587785 + 1.80902i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-0.809017 + 0.587785i) q^{33} +(-0.550672 - 1.69480i) q^{35} +(0.809017 - 0.587785i) q^{36} +1.00000i q^{40} +(-0.809017 - 1.58779i) q^{42} +(-0.156434 - 0.987688i) q^{44} +(0.987688 + 0.156434i) q^{45} +(0.156434 + 0.987688i) q^{48} +(-2.06909 + 0.672288i) q^{49} +(-0.707107 + 0.707107i) q^{50} +(0.550672 - 0.280582i) q^{53} +1.00000 q^{54} +(0.587785 - 0.809017i) q^{55} +1.78201 q^{56} +(1.95106 + 0.309017i) q^{58} +(0.533698 - 0.734572i) q^{59} +(-0.587785 + 0.809017i) q^{60} +(-0.297556 - 1.87869i) q^{62} +(0.278768 - 1.76007i) q^{63} +(-0.951057 - 0.309017i) q^{64} +(0.453990 - 0.891007i) q^{66} +(1.26007 + 1.26007i) q^{70} +(-0.453990 + 0.891007i) q^{72} +(0.309017 - 0.0489435i) q^{73} +(-0.987688 + 0.156434i) q^{75} +(-1.44168 - 1.04744i) q^{77} +(0.500000 - 1.53884i) q^{79} +(-0.453990 - 0.891007i) q^{80} +(0.809017 + 0.587785i) q^{81} +(1.44168 + 0.734572i) q^{83} +(1.44168 + 1.04744i) q^{84} +(1.39680 + 1.39680i) q^{87} +(0.587785 + 0.809017i) q^{88} +(-0.951057 + 0.309017i) q^{90} +(0.863541 - 1.69480i) q^{93} +(-0.587785 - 0.809017i) q^{96} +(0.142040 + 0.278768i) q^{97} +(1.53836 - 1.53836i) q^{98} +(0.891007 - 0.453990i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{7} - 4 q^{10} - 16 q^{15} + 4 q^{16} + 4 q^{22} - 4 q^{24} - 16 q^{28} - 4 q^{33} + 4 q^{36} - 4 q^{42} + 16 q^{54} + 16 q^{58} + 4 q^{63} - 4 q^{70} - 4 q^{73} + 8 q^{79} + 4 q^{81} + 4 q^{87}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1320\mathbb{Z}\right)^\times\).

\(n\) \(661\) \(881\) \(991\) \(1057\) \(1201\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(3\) −0.987688 0.156434i −0.987688 0.156434i
\(4\) 0.587785 0.809017i 0.587785 0.809017i
\(5\) 0.987688 0.156434i 0.987688 0.156434i
\(6\) 0.951057 0.309017i 0.951057 0.309017i
\(7\) −0.278768 1.76007i −0.278768 1.76007i −0.587785 0.809017i \(-0.700000\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(8\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(9\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(10\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(11\) 0.707107 0.707107i 0.707107 0.707107i
\(12\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(13\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(14\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(15\) −1.00000 −1.00000
\(16\) −0.309017 0.951057i −0.309017 0.951057i
\(17\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(18\) −0.987688 + 0.156434i −0.987688 + 0.156434i
\(19\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(20\) 0.453990 0.891007i 0.453990 0.891007i
\(21\) 1.78201i 1.78201i
\(22\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0.309017 0.951057i 0.309017 0.951057i
\(25\) 0.951057 0.309017i 0.951057 0.309017i
\(26\) 0 0
\(27\) −0.891007 0.453990i −0.891007 0.453990i
\(28\) −1.58779 0.809017i −1.58779 0.809017i
\(29\) −1.59811 1.16110i −1.59811 1.16110i −0.891007 0.453990i \(-0.850000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(30\) 0.891007 0.453990i 0.891007 0.453990i
\(31\) −0.587785 + 1.80902i −0.587785 + 1.80902i 1.00000i \(0.5\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(32\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(33\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(34\) 0 0
\(35\) −0.550672 1.69480i −0.550672 1.69480i
\(36\) 0.809017 0.587785i 0.809017 0.587785i
\(37\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 1.00000i 1.00000i
\(41\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(42\) −0.809017 1.58779i −0.809017 1.58779i
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) −0.156434 0.987688i −0.156434 0.987688i
\(45\) 0.987688 + 0.156434i 0.987688 + 0.156434i
\(46\) 0 0
\(47\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(48\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(49\) −2.06909 + 0.672288i −2.06909 + 0.672288i
\(50\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.550672 0.280582i 0.550672 0.280582i −0.156434 0.987688i \(-0.550000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 1.00000 1.00000
\(55\) 0.587785 0.809017i 0.587785 0.809017i
\(56\) 1.78201 1.78201
\(57\) 0 0
\(58\) 1.95106 + 0.309017i 1.95106 + 0.309017i
\(59\) 0.533698 0.734572i 0.533698 0.734572i −0.453990 0.891007i \(-0.650000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(60\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(61\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(62\) −0.297556 1.87869i −0.297556 1.87869i
\(63\) 0.278768 1.76007i 0.278768 1.76007i
\(64\) −0.951057 0.309017i −0.951057 0.309017i
\(65\) 0 0
\(66\) 0.453990 0.891007i 0.453990 0.891007i
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 1.26007 + 1.26007i 1.26007 + 1.26007i
\(71\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(72\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(73\) 0.309017 0.0489435i 0.309017 0.0489435i 1.00000i \(-0.5\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(74\) 0 0
\(75\) −0.987688 + 0.156434i −0.987688 + 0.156434i
\(76\) 0 0
\(77\) −1.44168 1.04744i −1.44168 1.04744i
\(78\) 0 0
\(79\) 0.500000 1.53884i 0.500000 1.53884i −0.309017 0.951057i \(-0.600000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(80\) −0.453990 0.891007i −0.453990 0.891007i
\(81\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(82\) 0 0
\(83\) 1.44168 + 0.734572i 1.44168 + 0.734572i 0.987688 0.156434i \(-0.0500000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(84\) 1.44168 + 1.04744i 1.44168 + 1.04744i
\(85\) 0 0
\(86\) 0 0
\(87\) 1.39680 + 1.39680i 1.39680 + 1.39680i
\(88\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(91\) 0 0
\(92\) 0 0
\(93\) 0.863541 1.69480i 0.863541 1.69480i
\(94\) 0 0
\(95\) 0 0
\(96\) −0.587785 0.809017i −0.587785 0.809017i
\(97\) 0.142040 + 0.278768i 0.142040 + 0.278768i 0.951057 0.309017i \(-0.100000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(98\) 1.53836 1.53836i 1.53836 1.53836i
\(99\) 0.891007 0.453990i 0.891007 0.453990i
\(100\) 0.309017 0.951057i 0.309017 0.951057i
\(101\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i 0.453990 0.891007i \(-0.350000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(102\) 0 0
\(103\) −0.142040 0.896802i −0.142040 0.896802i −0.951057 0.309017i \(-0.900000\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(104\) 0 0
\(105\) 0.278768 + 1.76007i 0.278768 + 1.76007i
\(106\) −0.363271 + 0.500000i −0.363271 + 0.500000i
\(107\) −0.610425 0.0966818i −0.610425 0.0966818i −0.156434 0.987688i \(-0.550000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(108\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(111\) 0 0
\(112\) −1.58779 + 0.809017i −1.58779 + 0.809017i
\(113\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.87869 + 0.610425i −1.87869 + 0.610425i
\(117\) 0 0
\(118\) −0.142040 + 0.896802i −0.142040 + 0.896802i
\(119\) 0 0
\(120\) 0.156434 0.987688i 0.156434 0.987688i
\(121\) 1.00000i 1.00000i
\(122\) 0 0
\(123\) 0 0
\(124\) 1.11803 + 1.53884i 1.11803 + 1.53884i
\(125\) 0.891007 0.453990i 0.891007 0.453990i
\(126\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(127\) −0.642040 + 1.26007i −0.642040 + 1.26007i 0.309017 + 0.951057i \(0.400000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(128\) 0.987688 0.156434i 0.987688 0.156434i
\(129\) 0 0
\(130\) 0 0
\(131\) 0.907981i 0.907981i 0.891007 + 0.453990i \(0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(132\) 1.00000i 1.00000i
\(133\) 0 0
\(134\) 0 0
\(135\) −0.951057 0.309017i −0.951057 0.309017i
\(136\) 0 0
\(137\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(138\) 0 0
\(139\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(140\) −1.69480 0.550672i −1.69480 0.550672i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000i 1.00000i
\(145\) −1.76007 0.896802i −1.76007 0.896802i
\(146\) −0.253116 + 0.183900i −0.253116 + 0.183900i
\(147\) 2.14879 0.340334i 2.14879 0.340334i
\(148\) 0 0
\(149\) −0.280582 0.863541i −0.280582 0.863541i −0.987688 0.156434i \(-0.950000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(150\) 0.809017 0.587785i 0.809017 0.587785i
\(151\) −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1.76007 + 0.278768i 1.76007 + 0.278768i
\(155\) −0.297556 + 1.87869i −0.297556 + 1.87869i
\(156\) 0 0
\(157\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(158\) 0.253116 + 1.59811i 0.253116 + 1.59811i
\(159\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(160\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(161\) 0 0
\(162\) −0.987688 0.156434i −0.987688 0.156434i
\(163\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(164\) 0 0
\(165\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(166\) −1.61803 −1.61803
\(167\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(168\) −1.76007 0.278768i −1.76007 0.278768i
\(169\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.0966818 + 0.610425i −0.0966818 + 0.610425i 0.891007 + 0.453990i \(0.150000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(174\) −1.87869 0.610425i −1.87869 0.610425i
\(175\) −0.809017 1.58779i −0.809017 1.58779i
\(176\) −0.891007 0.453990i −0.891007 0.453990i
\(177\) −0.642040 + 0.642040i −0.642040 + 0.642040i
\(178\) 0 0
\(179\) 1.16110 + 1.59811i 1.16110 + 1.59811i 0.707107 + 0.707107i \(0.250000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(180\) 0.707107 0.707107i 0.707107 0.707107i
\(181\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 1.90211i 1.90211i
\(187\) 0 0
\(188\) 0 0
\(189\) −0.550672 + 1.69480i −0.550672 + 1.69480i
\(190\) 0 0
\(191\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(192\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(193\) 0.809017 + 0.412215i 0.809017 + 0.412215i 0.809017 0.587785i \(-0.200000\pi\)
1.00000i \(0.5\pi\)
\(194\) −0.253116 0.183900i −0.253116 0.183900i
\(195\) 0 0
\(196\) −0.672288 + 2.06909i −0.672288 + 2.06909i
\(197\) −0.831254 0.831254i −0.831254 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(198\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(199\) 1.61803i 1.61803i 0.587785 + 0.809017i \(0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(200\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(201\) 0 0
\(202\) −0.309017 + 0.0489435i −0.309017 + 0.0489435i
\(203\) −1.59811 + 3.13647i −1.59811 + 3.13647i
\(204\) 0 0
\(205\) 0 0
\(206\) 0.533698 + 0.734572i 0.533698 + 0.734572i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) −1.04744 1.44168i −1.04744 1.44168i
\(211\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(212\) 0.0966818 0.610425i 0.0966818 0.610425i
\(213\) 0 0
\(214\) 0.587785 0.190983i 0.587785 0.190983i
\(215\) 0 0
\(216\) 0.587785 0.809017i 0.587785 0.809017i
\(217\) 3.34786 + 0.530249i 3.34786 + 0.530249i
\(218\) 0 0
\(219\) −0.312869 −0.312869
\(220\) −0.309017 0.951057i −0.309017 0.951057i
\(221\) 0 0
\(222\) 0 0
\(223\) −0.309017 0.0489435i −0.309017 0.0489435i 1.00000i \(-0.5\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(224\) 1.04744 1.44168i 1.04744 1.44168i
\(225\) 1.00000 1.00000
\(226\) 0 0
\(227\) 0.183900 + 1.16110i 0.183900 + 1.16110i 0.891007 + 0.453990i \(0.150000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(230\) 0 0
\(231\) 1.26007 + 1.26007i 1.26007 + 1.26007i
\(232\) 1.39680 1.39680i 1.39680 1.39680i
\(233\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −0.280582 0.863541i −0.280582 0.863541i
\(237\) −0.734572 + 1.44168i −0.734572 + 1.44168i
\(238\) 0 0
\(239\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(240\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(241\) 0.618034i 0.618034i 0.951057 + 0.309017i \(0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(242\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(243\) −0.707107 0.707107i −0.707107 0.707107i
\(244\) 0 0
\(245\) −1.93845 + 0.987688i −1.93845 + 0.987688i
\(246\) 0 0
\(247\) 0 0
\(248\) −1.69480 0.863541i −1.69480 0.863541i
\(249\) −1.30902 0.951057i −1.30902 0.951057i
\(250\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(251\) 0.0966818 0.297556i 0.0966818 0.297556i −0.891007 0.453990i \(-0.850000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(252\) −1.26007 1.26007i −1.26007 1.26007i
\(253\) 0 0
\(254\) 1.41421i 1.41421i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(257\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.16110 1.59811i −1.16110 1.59811i
\(262\) −0.412215 0.809017i −0.412215 0.809017i
\(263\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(264\) −0.453990 0.891007i −0.453990 0.891007i
\(265\) 0.500000 0.363271i 0.500000 0.363271i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1.34500 0.437016i 1.34500 0.437016i 0.453990 0.891007i \(-0.350000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(270\) 0.987688 0.156434i 0.987688 0.156434i
\(271\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.453990 0.891007i 0.453990 0.891007i
\(276\) 0 0
\(277\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(278\) 0 0
\(279\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(280\) 1.76007 0.278768i 1.76007 0.278768i
\(281\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(282\) 0 0
\(283\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(289\) −0.587785 0.809017i −0.587785 0.809017i
\(290\) 1.97538 1.97538
\(291\) −0.0966818 0.297556i −0.0966818 0.297556i
\(292\) 0.142040 0.278768i 0.142040 0.278768i
\(293\) 1.87869 0.297556i 1.87869 0.297556i 0.891007 0.453990i \(-0.150000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(294\) −1.76007 + 1.27877i −1.76007 + 1.27877i
\(295\) 0.412215 0.809017i 0.412215 0.809017i
\(296\) 0 0
\(297\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(298\) 0.642040 + 0.642040i 0.642040 + 0.642040i
\(299\) 0 0
\(300\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(301\) 0 0
\(302\) 1.04744 + 0.533698i 1.04744 + 0.533698i
\(303\) −0.278768 0.142040i −0.278768 0.142040i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) −1.69480 + 0.550672i −1.69480 + 0.550672i
\(309\) 0.907981i 0.907981i
\(310\) −0.587785 1.80902i −0.587785 1.80902i
\(311\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(312\) 0 0
\(313\) 0.896802 1.76007i 0.896802 1.76007i 0.309017 0.951057i \(-0.400000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(314\) 0 0
\(315\) 1.78201i 1.78201i
\(316\) −0.951057 1.30902i −0.951057 1.30902i
\(317\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(318\) 0.437016 0.437016i 0.437016 0.437016i
\(319\) −1.95106 + 0.309017i −1.95106 + 0.309017i
\(320\) −0.987688 0.156434i −0.987688 0.156434i
\(321\) 0.587785 + 0.190983i 0.587785 + 0.190983i
\(322\) 0 0
\(323\) 0 0
\(324\) 0.951057 0.309017i 0.951057 0.309017i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0.309017 0.951057i 0.309017 0.951057i
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 1.44168 0.734572i 1.44168 0.734572i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 1.69480 0.550672i 1.69480 0.550672i
\(337\) 0.221232 + 1.39680i 0.221232 + 1.39680i 0.809017 + 0.587785i \(0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(338\) 0.156434 0.987688i 0.156434 0.987688i
\(339\) 0 0
\(340\) 0 0
\(341\) 0.863541 + 1.69480i 0.863541 + 1.69480i
\(342\) 0 0
\(343\) 0.951057 + 1.86655i 0.951057 + 1.86655i
\(344\) 0 0
\(345\) 0 0
\(346\) −0.190983 0.587785i −0.190983 0.587785i
\(347\) −0.863541 + 1.69480i −0.863541 + 1.69480i −0.156434 + 0.987688i \(0.550000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(348\) 1.95106 0.309017i 1.95106 0.309017i
\(349\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(350\) 1.44168 + 1.04744i 1.44168 + 1.04744i
\(351\) 0 0
\(352\) 1.00000 1.00000
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0.280582 0.863541i 0.280582 0.863541i
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −1.76007 0.896802i −1.76007 0.896802i
\(359\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(360\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(361\) 0.309017 0.951057i 0.309017 0.951057i
\(362\) 0 0
\(363\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(364\) 0 0
\(365\) 0.297556 0.0966818i 0.297556 0.0966818i
\(366\) 0 0
\(367\) 1.95106 0.309017i 1.95106 0.309017i 0.951057 0.309017i \(-0.100000\pi\)
1.00000 \(0\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −0.647354 0.891007i −0.647354 0.891007i
\(372\) −0.863541 1.69480i −0.863541 1.69480i
\(373\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) −0.951057 + 0.309017i −0.951057 + 0.309017i
\(376\) 0 0
\(377\) 0 0
\(378\) −0.278768 1.76007i −0.278768 1.76007i
\(379\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(380\) 0 0
\(381\) 0.831254 1.14412i 0.831254 1.14412i
\(382\) 0 0
\(383\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(384\) −1.00000 −1.00000
\(385\) −1.58779 0.809017i −1.58779 0.809017i
\(386\) −0.907981 −0.907981
\(387\) 0 0
\(388\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i
\(389\) −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i \(0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −0.340334 2.14879i −0.340334 2.14879i
\(393\) 0.142040 0.896802i 0.142040 0.896802i
\(394\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(395\) 0.253116 1.59811i 0.253116 1.59811i
\(396\) 0.156434 0.987688i 0.156434 0.987688i
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) −0.734572 1.44168i −0.734572 1.44168i
\(399\) 0 0
\(400\) −0.587785 0.809017i −0.587785 0.809017i
\(401\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0.253116 0.183900i 0.253116 0.183900i
\(405\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(406\) 3.52015i 3.52015i
\(407\) 0 0
\(408\) 0 0
\(409\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −0.809017 0.412215i −0.809017 0.412215i
\(413\) −1.44168 0.734572i −1.44168 0.734572i
\(414\) 0 0
\(415\) 1.53884 + 0.500000i 1.53884 + 0.500000i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 1.97538i 1.97538i −0.156434 0.987688i \(-0.550000\pi\)
0.156434 0.987688i \(-0.450000\pi\)
\(420\) 1.58779 + 0.809017i 1.58779 + 0.809017i
\(421\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0.190983 + 0.587785i 0.190983 + 0.587785i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −0.437016 + 0.437016i −0.437016 + 0.437016i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(432\) −0.156434 + 0.987688i −0.156434 + 0.987688i
\(433\) 0.278768 + 1.76007i 0.278768 + 1.76007i 0.587785 + 0.809017i \(0.300000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(434\) −3.22369 + 1.04744i −3.22369 + 1.04744i
\(435\) 1.59811 + 1.16110i 1.59811 + 1.16110i
\(436\) 0 0
\(437\) 0 0
\(438\) 0.278768 0.142040i 0.278768 0.142040i
\(439\) 1.90211 1.90211 0.951057 0.309017i \(-0.100000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(440\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(441\) −2.17557 −2.17557
\(442\) 0 0
\(443\) 0.610425 + 0.0966818i 0.610425 + 0.0966818i 0.453990 0.891007i \(-0.350000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0.297556 0.0966818i 0.297556 0.0966818i
\(447\) 0.142040 + 0.896802i 0.142040 + 0.896802i
\(448\) −0.278768 + 1.76007i −0.278768 + 1.76007i
\(449\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(450\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(451\) 0 0
\(452\) 0 0
\(453\) 0.533698 + 1.04744i 0.533698 + 1.04744i
\(454\) −0.690983 0.951057i −0.690983 0.951057i
\(455\) 0 0
\(456\) 0 0
\(457\) 0.896802 1.76007i 0.896802 1.76007i 0.309017 0.951057i \(-0.400000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(462\) −1.69480 0.550672i −1.69480 0.550672i
\(463\) 1.26007 + 1.26007i 1.26007 + 1.26007i 0.951057 + 0.309017i \(0.100000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(464\) −0.610425 + 1.87869i −0.610425 + 1.87869i
\(465\) 0.587785 1.80902i 0.587785 1.80902i
\(466\) 0 0
\(467\) 1.69480 + 0.863541i 1.69480 + 0.863541i 0.987688 + 0.156434i \(0.0500000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0.642040 + 0.642040i 0.642040 + 0.642040i
\(473\) 0 0
\(474\) 1.61803i 1.61803i
\(475\) 0 0
\(476\) 0 0
\(477\) 0.610425 0.0966818i 0.610425 0.0966818i
\(478\) 0 0
\(479\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(480\) −0.707107 0.707107i −0.707107 0.707107i
\(481\) 0 0
\(482\) −0.280582 0.550672i −0.280582 0.550672i
\(483\) 0 0
\(484\) −0.809017 0.587785i −0.809017 0.587785i
\(485\) 0.183900 + 0.253116i 0.183900 + 0.253116i
\(486\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(487\) 0.278768 1.76007i 0.278768 1.76007i −0.309017 0.951057i \(-0.600000\pi\)
0.587785 0.809017i \(-0.300000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 1.27877 1.76007i 1.27877 1.76007i
\(491\) −0.831254 + 1.14412i −0.831254 + 1.14412i 0.156434 + 0.987688i \(0.450000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0.809017 0.587785i 0.809017 0.587785i
\(496\) 1.90211 1.90211
\(497\) 0 0
\(498\) 1.59811 + 0.253116i 1.59811 + 0.253116i
\(499\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(500\) 0.156434 0.987688i 0.156434 0.987688i
\(501\) 0 0
\(502\) 0.0489435 + 0.309017i 0.0489435 + 0.309017i
\(503\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(504\) 1.69480 + 0.550672i 1.69480 + 0.550672i
\(505\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i
\(506\) 0 0
\(507\) 0.707107 0.707107i 0.707107 0.707107i
\(508\) 0.642040 + 1.26007i 0.642040 + 1.26007i
\(509\) 0.533698 + 0.734572i 0.533698 + 0.734572i 0.987688 0.156434i \(-0.0500000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(510\) 0 0
\(511\) −0.172288 0.530249i −0.172288 0.530249i
\(512\) 0.453990 0.891007i 0.453990 0.891007i
\(513\) 0 0
\(514\) 0 0
\(515\) −0.280582 0.863541i −0.280582 0.863541i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.190983 0.587785i 0.190983 0.587785i
\(520\) 0 0
\(521\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(522\) 1.76007 + 0.896802i 1.76007 + 0.896802i
\(523\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(524\) 0.734572 + 0.533698i 0.734572 + 0.533698i
\(525\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(526\) 0 0
\(527\) 0 0
\(528\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(529\) 1.00000i 1.00000i
\(530\) −0.280582 + 0.550672i −0.280582 + 0.550672i
\(531\) 0.734572 0.533698i 0.734572 0.533698i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.618034 −0.618034
\(536\) 0 0
\(537\) −0.896802 1.76007i −0.896802 1.76007i
\(538\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(539\) −0.987688 + 1.93845i −0.987688 + 1.93845i
\(540\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(541\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000i 1.00000i
\(551\) 0 0
\(552\) 0 0
\(553\) −2.84786 0.451057i −2.84786 0.451057i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.297556 + 1.87869i 0.297556 + 1.87869i 0.453990 + 0.891007i \(0.350000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(558\) 0.297556 1.87869i 0.297556 1.87869i
\(559\) 0 0
\(560\) −1.44168 + 1.04744i −1.44168 + 1.04744i
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.891007 0.453990i \(-0.150000\pi\)
−0.891007 + 0.453990i \(0.850000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.809017 1.58779i 0.809017 1.58779i
\(568\) 0 0
\(569\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.809017 0.587785i −0.809017 0.587785i
\(577\) −1.58779 0.809017i −1.58779 0.809017i −0.587785 0.809017i \(-0.700000\pi\)
−1.00000 \(\pi\)
\(578\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(579\) −0.734572 0.533698i −0.734572 0.533698i
\(580\) −1.76007 + 0.896802i −1.76007 + 0.896802i
\(581\) 0.891007 2.74224i 0.891007 2.74224i
\(582\) 0.221232 + 0.221232i 0.221232 + 0.221232i
\(583\) 0.190983 0.587785i 0.190983 0.587785i
\(584\) 0.312869i 0.312869i
\(585\) 0 0
\(586\) −1.53884 + 1.11803i −1.53884 + 1.11803i
\(587\) −1.16110 + 0.183900i −1.16110 + 0.183900i −0.707107 0.707107i \(-0.750000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(588\) 0.987688 1.93845i 0.987688 1.93845i
\(589\) 0 0
\(590\) 0.907981i 0.907981i
\(591\) 0.690983 + 0.951057i 0.690983 + 0.951057i
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0.707107 0.707107i 0.707107 0.707107i
\(595\) 0 0
\(596\) −0.863541 0.280582i −0.863541 0.280582i
\(597\) 0.253116 1.59811i 0.253116 1.59811i
\(598\) 0 0
\(599\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(600\) 1.00000i 1.00000i
\(601\) −1.11803 + 1.53884i −1.11803 + 1.53884i −0.309017 + 0.951057i \(0.600000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1.17557 −1.17557
\(605\) −0.156434 0.987688i −0.156434 0.987688i
\(606\) 0.312869 0.312869
\(607\) −1.26007 + 0.642040i −1.26007 + 0.642040i −0.951057 0.309017i \(-0.900000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(608\) 0 0
\(609\) 2.06909 2.84786i 2.06909 2.84786i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.156434 0.987688i \(-0.450000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 1.26007 1.26007i 1.26007 1.26007i
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) −0.412215 0.809017i −0.412215 0.809017i
\(619\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(620\) 1.34500 + 1.34500i 1.34500 + 1.34500i
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0.809017 0.587785i 0.809017 0.587785i
\(626\) 1.97538i 1.97538i
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0.809017 + 1.58779i 0.809017 + 1.58779i
\(631\) −0.951057 0.690983i −0.951057 0.690983i 1.00000i \(-0.5\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(632\) 1.44168 + 0.734572i 1.44168 + 0.734572i
\(633\) 0 0
\(634\) 0 0
\(635\) −0.437016 + 1.34500i −0.437016 + 1.34500i
\(636\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(637\) 0 0
\(638\) 1.59811 1.16110i 1.59811 1.16110i
\(639\) 0 0
\(640\) 0.951057 0.309017i 0.951057 0.309017i
\(641\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(642\) −0.610425 + 0.0966818i −0.610425 + 0.0966818i
\(643\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(648\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(649\) −0.142040 0.896802i −0.142040 0.896802i
\(650\) 0 0
\(651\) −3.22369 1.04744i −3.22369 1.04744i
\(652\) 0 0
\(653\) −0.183900 1.16110i −0.183900 1.16110i −0.891007 0.453990i \(-0.850000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(654\) 0 0
\(655\) 0.142040 + 0.896802i 0.142040 + 0.896802i
\(656\) 0 0
\(657\) 0.309017 + 0.0489435i 0.309017 + 0.0489435i
\(658\) 0 0
\(659\) 1.97538 1.97538 0.987688 0.156434i \(-0.0500000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(660\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −0.951057 + 1.30902i −0.951057 + 1.30902i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.297556 + 0.0966818i 0.297556 + 0.0966818i
\(670\) 0 0
\(671\) 0 0
\(672\) −1.26007 + 1.26007i −1.26007 + 1.26007i
\(673\) −0.896802 1.76007i −0.896802 1.76007i −0.587785 0.809017i \(-0.700000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(674\) −0.831254 1.14412i −0.831254 1.14412i
\(675\) −0.987688 0.156434i −0.987688 0.156434i
\(676\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(677\) 0.280582 0.550672i 0.280582 0.550672i −0.707107 0.707107i \(-0.750000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(678\) 0 0
\(679\) 0.451057 0.327712i 0.451057 0.327712i
\(680\) 0 0
\(681\) 1.17557i 1.17557i
\(682\) −1.53884 1.11803i −1.53884 1.11803i
\(683\) −1.34500 1.34500i −1.34500 1.34500i −0.891007 0.453990i \(-0.850000\pi\)
−0.453990 0.891007i \(-0.650000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.69480 1.23134i −1.69480 1.23134i
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(692\) 0.437016 + 0.437016i 0.437016 + 0.437016i
\(693\) −1.04744 1.44168i −1.04744 1.44168i
\(694\) 1.90211i 1.90211i
\(695\) 0 0
\(696\) −1.59811 + 1.16110i −1.59811 + 1.16110i
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −1.76007 0.278768i −1.76007 0.278768i
\(701\) 0.831254 + 1.14412i 0.831254 + 1.14412i 0.987688 + 0.156434i \(0.0500000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −0.891007 + 0.453990i −0.891007 + 0.453990i
\(705\) 0 0
\(706\) 0 0
\(707\) 0.0872179 0.550672i 0.0872179 0.550672i
\(708\) 0.142040 + 0.896802i 0.142040 + 0.896802i
\(709\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(710\) 0 0
\(711\) 0.951057 1.30902i 0.951057 1.30902i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 1.97538 1.97538
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(720\) −0.156434 0.987688i −0.156434 0.987688i
\(721\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(722\) 0.156434 + 0.987688i 0.156434 + 0.987688i
\(723\) 0.0966818 0.610425i 0.0966818 0.610425i
\(724\) 0 0
\(725\) −1.87869 0.610425i −1.87869 0.610425i
\(726\) −0.309017 0.951057i −0.309017 0.951057i
\(727\) −1.00000 + 1.00000i −1.00000 + 1.00000i 1.00000i \(0.5\pi\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 0.587785 + 0.809017i 0.587785 + 0.809017i
\(730\) −0.221232 + 0.221232i −0.221232 + 0.221232i
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(734\) −1.59811 + 1.16110i −1.59811 + 1.16110i
\(735\) 2.06909 0.672288i 2.06909 0.672288i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.981305 + 0.500000i 0.981305 + 0.500000i
\(743\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(744\) 1.53884 + 1.11803i 1.53884 + 1.11803i
\(745\) −0.412215 0.809017i −0.412215 0.809017i
\(746\) 0 0
\(747\) 1.14412 + 1.14412i 1.14412 + 1.14412i
\(748\) 0 0
\(749\) 1.10134i 1.10134i
\(750\) 0.707107 0.707107i 0.707107 0.707107i
\(751\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(752\) 0 0
\(753\) −0.142040 + 0.278768i −0.142040 + 0.278768i
\(754\) 0 0
\(755\) −0.831254 0.831254i −0.831254 0.831254i
\(756\) 1.04744 + 1.44168i 1.04744 + 1.44168i
\(757\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(762\) −0.221232 + 1.39680i −0.221232 + 1.39680i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.891007 0.453990i 0.891007 0.453990i
\(769\) 1.17557 1.17557 0.587785 0.809017i \(-0.300000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(770\) 1.78201 1.78201
\(771\) 0 0
\(772\) 0.809017 0.412215i 0.809017 0.412215i
\(773\) −1.16110 0.183900i −1.16110 0.183900i −0.453990 0.891007i \(-0.650000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 0 0
\(775\) 1.90211i 1.90211i
\(776\) −0.297556 + 0.0966818i −0.297556 + 0.0966818i
\(777\) 0 0
\(778\) 0.221232 1.39680i 0.221232 1.39680i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0.896802 + 1.76007i 0.896802 + 1.76007i
\(784\) 1.27877 + 1.76007i 1.27877 + 1.76007i
\(785\) 0 0
\(786\) 0.280582 + 0.863541i 0.280582 + 0.863541i
\(787\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(788\) −1.16110 + 0.183900i −1.16110 + 0.183900i
\(789\) 0 0
\(790\) 0.500000 + 1.53884i 0.500000 + 1.53884i
\(791\) 0 0
\(792\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(793\) 0 0
\(794\) 0 0
\(795\) −0.550672 + 0.280582i −0.550672 + 0.280582i
\(796\) 1.30902 + 0.951057i 1.30902 + 0.951057i
\(797\) −1.69480 0.863541i −1.69480 0.863541i −0.987688 0.156434i \(-0.950000\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0.891007 + 0.453990i 0.891007 + 0.453990i
\(801\) 0 0
\(802\) 0 0
\(803\) 0.183900 0.253116i 0.183900 0.253116i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.39680 + 0.221232i −1.39680 + 0.221232i
\(808\) −0.142040 + 0.278768i −0.142040 + 0.278768i
\(809\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(810\) −1.00000 −1.00000
\(811\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(812\) 1.59811 + 3.13647i 1.59811 + 3.13647i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −0.253116 1.59811i −0.253116 1.59811i
\(819\) 0 0
\(820\) 0 0
\(821\) −0.533698 + 0.734572i −0.533698 + 0.734572i −0.987688 0.156434i \(-0.950000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(822\) 0 0
\(823\) −1.76007 + 0.896802i −1.76007 + 0.896802i −0.809017 + 0.587785i \(0.800000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(824\) 0.907981 0.907981
\(825\) −0.587785 + 0.809017i −0.587785 + 0.809017i
\(826\) 1.61803 1.61803
\(827\) 1.69480 0.863541i 1.69480 0.863541i 0.707107 0.707107i \(-0.250000\pi\)
0.987688 0.156434i \(-0.0500000\pi\)
\(828\) 0 0
\(829\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(830\) −1.59811 + 0.253116i −1.59811 + 0.253116i
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.34500 1.34500i 1.34500 1.34500i
\(838\) 0.896802 + 1.76007i 0.896802 + 1.76007i
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) −1.78201 −1.78201
\(841\) 0.896802 + 2.76007i 0.896802 + 2.76007i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(846\) 0 0
\(847\) −1.76007 + 0.278768i −1.76007 + 0.278768i
\(848\) −0.437016 0.437016i −0.437016 0.437016i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.190983 0.587785i 0.190983 0.587785i
\(857\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.453990 0.891007i \(-0.350000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(864\) −0.309017 0.951057i −0.309017 0.951057i
\(865\) 0.618034i 0.618034i
\(866\) −1.04744 1.44168i −1.04744 1.44168i
\(867\) 0.453990 + 0.891007i 0.453990 + 0.891007i
\(868\) 2.39680 2.39680i 2.39680 2.39680i
\(869\) −0.734572 1.44168i −0.734572 1.44168i
\(870\) −1.95106 0.309017i −1.95106 0.309017i
\(871\) 0 0
\(872\) 0 0
\(873\) 0.0489435 + 0.309017i 0.0489435 + 0.309017i
\(874\) 0 0
\(875\) −1.04744 1.44168i −1.04744 1.44168i
\(876\) −0.183900 + 0.253116i −0.183900 + 0.253116i
\(877\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(878\) −1.69480 + 0.863541i −1.69480 + 0.863541i
\(879\) −1.90211 −1.90211
\(880\) −0.951057 0.309017i −0.951057 0.309017i
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 1.93845 0.987688i 1.93845 0.987688i
\(883\) 0 0 −0.987688 0.156434i \(-0.950000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(884\) 0 0
\(885\) −0.533698 + 0.734572i −0.533698 + 0.734572i
\(886\) −0.587785 + 0.190983i −0.587785 + 0.190983i
\(887\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(888\) 0 0
\(889\) 2.39680 + 0.778768i 2.39680 + 0.778768i
\(890\) 0 0
\(891\) 0.987688 0.156434i 0.987688 0.156434i
\(892\) −0.221232 + 0.221232i −0.221232 + 0.221232i
\(893\) 0 0
\(894\) −0.533698 0.734572i −0.533698 0.734572i
\(895\) 1.39680 + 1.39680i 1.39680 + 1.39680i
\(896\) −0.550672 1.69480i −0.550672 1.69480i
\(897\) 0 0
\(898\) 0 0
\(899\) 3.03979 2.20854i 3.03979 2.20854i
\(900\) 0.587785 0.809017i 0.587785 0.809017i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) −0.951057 0.690983i −0.951057 0.690983i
\(907\) 0 0 −0.891007 0.453990i \(-0.850000\pi\)
0.891007 + 0.453990i \(0.150000\pi\)
\(908\) 1.04744 + 0.533698i 1.04744 + 0.533698i
\(909\) 0.253116 + 0.183900i 0.253116 + 0.183900i
\(910\) 0 0
\(911\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(912\) 0 0
\(913\) 1.53884 0.500000i 1.53884 0.500000i
\(914\) 1.97538i 1.97538i
\(915\) 0 0
\(916\) 0 0
\(917\) 1.59811 0.253116i 1.59811 0.253116i
\(918\) 0 0
\(919\) 0.500000 + 1.53884i 0.500000 + 1.53884i 0.809017 + 0.587785i \(0.200000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.642040 1.26007i −0.642040 1.26007i
\(923\) 0 0
\(924\) 1.76007 0.278768i 1.76007 0.278768i
\(925\) 0 0
\(926\) −1.69480 0.550672i −1.69480 0.550672i
\(927\) 0.142040 0.896802i 0.142040 0.896802i
\(928\) −0.309017 1.95106i −0.309017 1.95106i
\(929\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(930\) 0.297556 + 1.87869i 0.297556 + 1.87869i
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) −1.90211 −1.90211
\(935\) 0 0
\(936\) 0 0
\(937\) 0.809017 0.412215i 0.809017 0.412215i 1.00000i \(-0.5\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(938\) 0 0
\(939\) −1.16110 + 1.59811i −1.16110 + 1.59811i
\(940\) 0 0
\(941\) −1.34500 + 0.437016i −1.34500 + 0.437016i −0.891007 0.453990i \(-0.850000\pi\)
−0.453990 + 0.891007i \(0.650000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −0.863541 0.280582i −0.863541 0.280582i
\(945\) −0.278768 + 1.76007i −0.278768 + 1.76007i
\(946\) 0 0
\(947\) −0.437016 + 0.437016i −0.437016 + 0.437016i −0.891007 0.453990i \(-0.850000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(948\) 0.734572 + 1.44168i 0.734572 + 1.44168i
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.987688 0.156434i \(-0.0500000\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(954\) −0.500000 + 0.363271i −0.500000 + 0.363271i
\(955\) 0 0
\(956\) 0 0
\(957\) 1.97538 1.97538
\(958\) 0 0
\(959\) 0 0
\(960\) 0.951057 + 0.309017i 0.951057 + 0.309017i
\(961\) −2.11803 1.53884i −2.11803 1.53884i
\(962\) 0 0
\(963\) −0.550672 0.280582i −0.550672 0.280582i
\(964\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(965\) 0.863541 + 0.280582i 0.863541 + 0.280582i
\(966\) 0 0
\(967\) 0.221232 + 0.221232i 0.221232 + 0.221232i 0.809017 0.587785i \(-0.200000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(968\) 0.987688 + 0.156434i 0.987688 + 0.156434i
\(969\) 0 0
\(970\) −0.278768 0.142040i −0.278768 0.142040i
\(971\) 1.14412 0.831254i 1.14412 0.831254i 0.156434 0.987688i \(-0.450000\pi\)
0.987688 + 0.156434i \(0.0500000\pi\)
\(972\) −0.987688 + 0.156434i −0.987688 + 0.156434i
\(973\) 0 0
\(974\) 0.550672 + 1.69480i 0.550672 + 1.69480i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.453990 0.891007i \(-0.650000\pi\)
0.453990 + 0.891007i \(0.350000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −0.340334 + 2.14879i −0.340334 + 2.14879i
\(981\) 0 0
\(982\) 0.221232 1.39680i 0.221232 1.39680i
\(983\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(984\) 0 0
\(985\) −0.951057 0.690983i −0.951057 0.690983i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −0.453990 + 0.891007i −0.453990 + 0.891007i
\(991\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(992\) −1.69480 + 0.863541i −1.69480 + 0.863541i
\(993\) 0 0
\(994\) 0 0
\(995\) 0.253116 + 1.59811i 0.253116 + 1.59811i
\(996\) −1.53884 + 0.500000i −1.53884 + 0.500000i
\(997\) 0 0 −0.156434 0.987688i \(-0.550000\pi\)
0.156434 + 0.987688i \(0.450000\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1320.1.dk.a.893.1 yes 16
3.2 odd 2 inner 1320.1.dk.a.893.2 yes 16
5.2 odd 4 1320.1.dk.b.1157.1 yes 16
8.5 even 2 inner 1320.1.dk.a.893.2 yes 16
11.6 odd 10 1320.1.dk.b.413.1 yes 16
15.2 even 4 1320.1.dk.b.1157.2 yes 16
24.5 odd 2 CM 1320.1.dk.a.893.1 yes 16
33.17 even 10 1320.1.dk.b.413.2 yes 16
40.37 odd 4 1320.1.dk.b.1157.2 yes 16
55.17 even 20 inner 1320.1.dk.a.677.1 16
88.61 odd 10 1320.1.dk.b.413.2 yes 16
120.77 even 4 1320.1.dk.b.1157.1 yes 16
165.17 odd 20 inner 1320.1.dk.a.677.2 yes 16
264.149 even 10 1320.1.dk.b.413.1 yes 16
440.237 even 20 inner 1320.1.dk.a.677.2 yes 16
1320.677 odd 20 inner 1320.1.dk.a.677.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1320.1.dk.a.677.1 16 55.17 even 20 inner
1320.1.dk.a.677.1 16 1320.677 odd 20 inner
1320.1.dk.a.677.2 yes 16 165.17 odd 20 inner
1320.1.dk.a.677.2 yes 16 440.237 even 20 inner
1320.1.dk.a.893.1 yes 16 1.1 even 1 trivial
1320.1.dk.a.893.1 yes 16 24.5 odd 2 CM
1320.1.dk.a.893.2 yes 16 3.2 odd 2 inner
1320.1.dk.a.893.2 yes 16 8.5 even 2 inner
1320.1.dk.b.413.1 yes 16 11.6 odd 10
1320.1.dk.b.413.1 yes 16 264.149 even 10
1320.1.dk.b.413.2 yes 16 33.17 even 10
1320.1.dk.b.413.2 yes 16 88.61 odd 10
1320.1.dk.b.1157.1 yes 16 5.2 odd 4
1320.1.dk.b.1157.1 yes 16 120.77 even 4
1320.1.dk.b.1157.2 yes 16 15.2 even 4
1320.1.dk.b.1157.2 yes 16 40.37 odd 4