Properties

Label 2-1320-5.4-c1-0-31
Degree $2$
Conductor $1320$
Sign $-0.848 - 0.529i$
Analytic cond. $10.5402$
Root an. cond. $3.24657$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (−1.89 − 1.18i)5-s − 4.20i·7-s − 9-s − 11-s − 2.90i·13-s + (−1.18 + 1.89i)15-s − 2.41i·17-s − 6.16·19-s − 4.20·21-s + 8.05i·23-s + (2.19 + 4.49i)25-s + i·27-s + 5.68·29-s + 1.52·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + (−0.848 − 0.529i)5-s − 1.58i·7-s − 0.333·9-s − 0.301·11-s − 0.804i·13-s + (−0.305 + 0.489i)15-s − 0.585i·17-s − 1.41·19-s − 0.917·21-s + 1.67i·23-s + (0.438 + 0.898i)25-s + 0.192i·27-s + 1.05·29-s + 0.273·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.848 - 0.529i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.848 - 0.529i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1320\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 11\)
Sign: $-0.848 - 0.529i$
Analytic conductor: \(10.5402\)
Root analytic conductor: \(3.24657\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1320} (529, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1320,\ (\ :1/2),\ -0.848 - 0.529i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5965183159\)
\(L(\frac12)\) \(\approx\) \(0.5965183159\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (1.89 + 1.18i)T \)
11 \( 1 + T \)
good7 \( 1 + 4.20iT - 7T^{2} \)
13 \( 1 + 2.90iT - 13T^{2} \)
17 \( 1 + 2.41iT - 17T^{2} \)
19 \( 1 + 6.16T + 19T^{2} \)
23 \( 1 - 8.05iT - 23T^{2} \)
29 \( 1 - 5.68T + 29T^{2} \)
31 \( 1 - 1.52T + 31T^{2} \)
37 \( 1 - 0.577iT - 37T^{2} \)
41 \( 1 - 3.30T + 41T^{2} \)
43 \( 1 + 10.6iT - 43T^{2} \)
47 \( 1 + 0.355iT - 47T^{2} \)
53 \( 1 - 9.95iT - 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 + 8.90T + 61T^{2} \)
67 \( 1 - 5.40iT - 67T^{2} \)
71 \( 1 - 6.61T + 71T^{2} \)
73 \( 1 - 6.21iT - 73T^{2} \)
79 \( 1 + 13.4T + 79T^{2} \)
83 \( 1 + 10.7iT - 83T^{2} \)
89 \( 1 + 7.52T + 89T^{2} \)
97 \( 1 - 3.33iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983816211202246066379738589154, −8.135429522343422851480260021407, −7.50432389549228349771855314591, −7.02326788442823698069241389314, −5.84864328016698904943527096700, −4.74590772350914974716326111534, −3.99227897769908756969761962892, −3.00166266735070065746905819549, −1.32260103586234665145656891242, −0.25756743806928078009709982620, 2.24427361220912339731730182142, 2.98826002543314049682404789603, 4.25283259754301588656620124051, 4.83027951515077042349212764689, 6.21302965367055574824252607822, 6.50445271082852464531645814025, 7.992723719607109670433338616025, 8.509131147322587580971286097414, 9.144457357324155084261144341266, 10.20039873826528918230133508866

Graph of the $Z$-function along the critical line