Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1320,2,Mod(529,1320)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1320, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1320.529");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1320.d (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529.1 |
|
0 | − | 1.00000i | 0 | −1.89621 | − | 1.18506i | 0 | − | 4.20542i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||
529.2 | 0 | − | 1.00000i | 0 | −1.76211 | + | 1.37658i | 0 | 2.71268i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
529.3 | 0 | − | 1.00000i | 0 | −0.122287 | − | 2.23272i | 0 | 2.56437i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
529.4 | 0 | − | 1.00000i | 0 | 0.548128 | + | 2.16785i | 0 | − | 2.99623i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||
529.5 | 0 | − | 1.00000i | 0 | 2.23248 | − | 0.126646i | 0 | 3.92460i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
529.6 | 0 | 1.00000i | 0 | −1.89621 | + | 1.18506i | 0 | 4.20542i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
529.7 | 0 | 1.00000i | 0 | −1.76211 | − | 1.37658i | 0 | − | 2.71268i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
529.8 | 0 | 1.00000i | 0 | −0.122287 | + | 2.23272i | 0 | − | 2.56437i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
529.9 | 0 | 1.00000i | 0 | 0.548128 | − | 2.16785i | 0 | 2.99623i | 0 | −1.00000 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||
529.10 | 0 | 1.00000i | 0 | 2.23248 | + | 0.126646i | 0 | − | 3.92460i | 0 | −1.00000 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1320.2.d.c | ✓ | 10 |
3.b | odd | 2 | 1 | 3960.2.d.h | 10 | ||
4.b | odd | 2 | 1 | 2640.2.d.k | 10 | ||
5.b | even | 2 | 1 | inner | 1320.2.d.c | ✓ | 10 |
5.c | odd | 4 | 1 | 6600.2.a.bx | 5 | ||
5.c | odd | 4 | 1 | 6600.2.a.bz | 5 | ||
15.d | odd | 2 | 1 | 3960.2.d.h | 10 | ||
20.d | odd | 2 | 1 | 2640.2.d.k | 10 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1320.2.d.c | ✓ | 10 | 1.a | even | 1 | 1 | trivial |
1320.2.d.c | ✓ | 10 | 5.b | even | 2 | 1 | inner |
2640.2.d.k | 10 | 4.b | odd | 2 | 1 | ||
2640.2.d.k | 10 | 20.d | odd | 2 | 1 | ||
3960.2.d.h | 10 | 3.b | odd | 2 | 1 | ||
3960.2.d.h | 10 | 15.d | odd | 2 | 1 | ||
6600.2.a.bx | 5 | 5.c | odd | 4 | 1 | ||
6600.2.a.bz | 5 | 5.c | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .