Properties

Label 1320.2.d.c
Level 13201320
Weight 22
Character orbit 1320.d
Analytic conductor 10.54010.540
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1320,2,Mod(529,1320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1320.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1320=233511 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1320.d (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.540253066810.5402530668
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10+23x8+187x6+657x4+928x2+324 x^{10} + 23x^{8} + 187x^{6} + 657x^{4} + 928x^{2} + 324 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q3β6q5β1q7q9q11+β9q13+β8q15+(β8+β7+2β2β1)q17+(β8β7++β5)q19++q99+O(q100) q + \beta_{2} q^{3} - \beta_{6} q^{5} - \beta_1 q^{7} - q^{9} - q^{11} + \beta_{9} q^{13} + \beta_{8} q^{15} + (\beta_{8} + \beta_{7} + 2 \beta_{2} - \beta_1) q^{17} + (\beta_{8} - \beta_{7} + \cdots + \beta_{5}) q^{19}+ \cdots + q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q2q510q910q114q19+4q212q258q29+8q31+8q35+16q41+2q4542q4912q51+2q5524q59+20q61+24q658q69++10q99+O(q100) 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} - 4 q^{19} + 4 q^{21} - 2 q^{25} - 8 q^{29} + 8 q^{31} + 8 q^{35} + 16 q^{41} + 2 q^{45} - 42 q^{49} - 12 q^{51} + 2 q^{55} - 24 q^{59} + 20 q^{61} + 24 q^{65} - 8 q^{69}+ \cdots + 10 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x10+23x8+187x6+657x4+928x2+324 x^{10} + 23x^{8} + 187x^{6} + 657x^{4} + 928x^{2} + 324 : Copy content Toggle raw display

β1\beta_{1}== (ν95ν7+119ν5+945ν3+2150ν)/288 ( -\nu^{9} - 5\nu^{7} + 119\nu^{5} + 945\nu^{3} + 2150\nu ) / 288 Copy content Toggle raw display
β2\beta_{2}== (5ν9+97ν7+557ν5+819ν3526ν)/576 ( 5\nu^{9} + 97\nu^{7} + 557\nu^{5} + 819\nu^{3} - 526\nu ) / 576 Copy content Toggle raw display
β3\beta_{3}== (ν821ν6137ν4255ν2+38)/32 ( -\nu^{8} - 21\nu^{6} - 137\nu^{4} - 255\nu^{2} + 38 ) / 32 Copy content Toggle raw display
β4\beta_{4}== (2ν945ν810ν7729ν6+238ν52997ν4+1602ν3++2142)/576 ( - 2 \nu^{9} - 45 \nu^{8} - 10 \nu^{7} - 729 \nu^{6} + 238 \nu^{5} - 2997 \nu^{4} + 1602 \nu^{3} + \cdots + 2142 ) / 576 Copy content Toggle raw display
β5\beta_{5}== (2ν927ν810ν7495ν6+238ν52835ν4+1602ν3+3438)/576 ( - 2 \nu^{9} - 27 \nu^{8} - 10 \nu^{7} - 495 \nu^{6} + 238 \nu^{5} - 2835 \nu^{4} + 1602 \nu^{3} + \cdots - 3438 ) / 576 Copy content Toggle raw display
β6\beta_{6}== (2ν9+27ν810ν7+495ν6+238ν5+2835ν4+1602ν3++3438)/576 ( - 2 \nu^{9} + 27 \nu^{8} - 10 \nu^{7} + 495 \nu^{6} + 238 \nu^{5} + 2835 \nu^{4} + 1602 \nu^{3} + \cdots + 3438 ) / 576 Copy content Toggle raw display
β7\beta_{7}== (2ν9+45ν810ν7+873ν6+238ν5+5301ν4+1602ν3++5058)/576 ( - 2 \nu^{9} + 45 \nu^{8} - 10 \nu^{7} + 873 \nu^{6} + 238 \nu^{5} + 5301 \nu^{4} + 1602 \nu^{3} + \cdots + 5058 ) / 576 Copy content Toggle raw display
β8\beta_{8}== (2ν945ν810ν7873ν6+238ν55301ν4+1602ν3+5058)/576 ( - 2 \nu^{9} - 45 \nu^{8} - 10 \nu^{7} - 873 \nu^{6} + 238 \nu^{5} - 5301 \nu^{4} + 1602 \nu^{3} + \cdots - 5058 ) / 576 Copy content Toggle raw display
β9\beta_{9}== (ν919ν7113ν5237ν3126ν)/8 ( -\nu^{9} - 19\nu^{7} - 113\nu^{5} - 237\nu^{3} - 126\nu ) / 8 Copy content Toggle raw display
ν\nu== (β8+β7β6β5)/2 ( \beta_{8} + \beta_{7} - \beta_{6} - \beta_{5} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β8+β7β6+β5+2β38)/2 ( -\beta_{8} + \beta_{7} - \beta_{6} + \beta_{5} + 2\beta_{3} - 8 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (9β89β7+7β6+7β5+4β1)/2 ( -9\beta_{8} - 9\beta_{7} + 7\beta_{6} + 7\beta_{5} + 4\beta_1 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (11β813β7+15β615β5+2β420β3+48)/2 ( 11\beta_{8} - 13\beta_{7} + 15\beta_{6} - 15\beta_{5} + 2\beta_{4} - 20\beta_{3} + 48 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (2β9+81β8+81β755β655β528β250β1)/2 ( -2\beta_{9} + 81\beta_{8} + 81\beta_{7} - 55\beta_{6} - 55\beta_{5} - 28\beta_{2} - 50\beta_1 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (119β8+143β7175β6+175β524β4+190β3348)/2 ( -119\beta_{8} + 143\beta_{7} - 175\beta_{6} + 175\beta_{5} - 24\beta_{4} + 190\beta_{3} - 348 ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (32β9745β8745β7+483β6+483β5+464β2+532β1)/2 ( 32\beta_{9} - 745\beta_{8} - 745\beta_{7} + 483\beta_{6} + 483\beta_{5} + 464\beta_{2} + 532\beta_1 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (1247β81477β7+1875β61875β5+230β41824β3+2848)/2 ( 1247\beta_{8} - 1477\beta_{7} + 1875\beta_{6} - 1875\beta_{5} + 230\beta_{4} - 1824\beta_{3} + 2848 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (398β9+7009β8+7009β74495β64495β55652β25406β1)/2 ( -398\beta_{9} + 7009\beta_{8} + 7009\beta_{7} - 4495\beta_{6} - 4495\beta_{5} - 5652\beta_{2} - 5406\beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1320Z)×\left(\mathbb{Z}/1320\mathbb{Z}\right)^\times.

nn 661661 881881 991991 10571057 12011201
χ(n)\chi(n) 11 11 11 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
529.1
0.711151i
3.13869i
2.11043i
1.61972i
2.35912i
0.711151i
3.13869i
2.11043i
1.61972i
2.35912i
0 1.00000i 0 −1.89621 1.18506i 0 4.20542i 0 −1.00000 0
529.2 0 1.00000i 0 −1.76211 + 1.37658i 0 2.71268i 0 −1.00000 0
529.3 0 1.00000i 0 −0.122287 2.23272i 0 2.56437i 0 −1.00000 0
529.4 0 1.00000i 0 0.548128 + 2.16785i 0 2.99623i 0 −1.00000 0
529.5 0 1.00000i 0 2.23248 0.126646i 0 3.92460i 0 −1.00000 0
529.6 0 1.00000i 0 −1.89621 + 1.18506i 0 4.20542i 0 −1.00000 0
529.7 0 1.00000i 0 −1.76211 1.37658i 0 2.71268i 0 −1.00000 0
529.8 0 1.00000i 0 −0.122287 + 2.23272i 0 2.56437i 0 −1.00000 0
529.9 0 1.00000i 0 0.548128 2.16785i 0 2.99623i 0 −1.00000 0
529.10 0 1.00000i 0 2.23248 + 0.126646i 0 3.92460i 0 −1.00000 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 529.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1320.2.d.c 10
3.b odd 2 1 3960.2.d.h 10
4.b odd 2 1 2640.2.d.k 10
5.b even 2 1 inner 1320.2.d.c 10
5.c odd 4 1 6600.2.a.bx 5
5.c odd 4 1 6600.2.a.bz 5
15.d odd 2 1 3960.2.d.h 10
20.d odd 2 1 2640.2.d.k 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1320.2.d.c 10 1.a even 1 1 trivial
1320.2.d.c 10 5.b even 2 1 inner
2640.2.d.k 10 4.b odd 2 1
2640.2.d.k 10 20.d odd 2 1
3960.2.d.h 10 3.b odd 2 1
3960.2.d.h 10 15.d odd 2 1
6600.2.a.bx 5 5.c odd 4 1
6600.2.a.bz 5 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T710+56T78+1204T76+12416T74+61632T72+118336 T_{7}^{10} + 56T_{7}^{8} + 1204T_{7}^{6} + 12416T_{7}^{4} + 61632T_{7}^{2} + 118336 acting on S2new(1320,[χ])S_{2}^{\mathrm{new}}(1320, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10 T^{10} Copy content Toggle raw display
33 (T2+1)5 (T^{2} + 1)^{5} Copy content Toggle raw display
55 T10+2T9++3125 T^{10} + 2 T^{9} + \cdots + 3125 Copy content Toggle raw display
77 T10+56T8++118336 T^{10} + 56 T^{8} + \cdots + 118336 Copy content Toggle raw display
1111 (T+1)10 (T + 1)^{10} Copy content Toggle raw display
1313 T10+92T8++419904 T^{10} + 92 T^{8} + \cdots + 419904 Copy content Toggle raw display
1717 T10+68T8++16384 T^{10} + 68 T^{8} + \cdots + 16384 Copy content Toggle raw display
1919 (T5+2T4++512)2 (T^{5} + 2 T^{4} + \cdots + 512)^{2} Copy content Toggle raw display
2323 T10+188T8++2359296 T^{10} + 188 T^{8} + \cdots + 2359296 Copy content Toggle raw display
2929 (T5+4T4++1472)2 (T^{5} + 4 T^{4} + \cdots + 1472)^{2} Copy content Toggle raw display
3131 (T54T4+1792)2 (T^{5} - 4 T^{4} + \cdots - 1792)^{2} Copy content Toggle raw display
3737 T10+104T8++16384 T^{10} + 104 T^{8} + \cdots + 16384 Copy content Toggle raw display
4141 (T58T4+3840)2 (T^{5} - 8 T^{4} + \cdots - 3840)^{2} Copy content Toggle raw display
4343 T10+268T8++9216 T^{10} + 268 T^{8} + \cdots + 9216 Copy content Toggle raw display
4747 T10+332T8++200704 T^{10} + 332 T^{8} + \cdots + 200704 Copy content Toggle raw display
5353 T10++144000000 T^{10} + \cdots + 144000000 Copy content Toggle raw display
5959 (T5+12T4+11392)2 (T^{5} + 12 T^{4} + \cdots - 11392)^{2} Copy content Toggle raw display
6161 (T510T4+7184)2 (T^{5} - 10 T^{4} + \cdots - 7184)^{2} Copy content Toggle raw display
6767 T10++1677721600 T^{10} + \cdots + 1677721600 Copy content Toggle raw display
7171 (T54T4++1952)2 (T^{5} - 4 T^{4} + \cdots + 1952)^{2} Copy content Toggle raw display
7373 T10+368T8++4804864 T^{10} + 368 T^{8} + \cdots + 4804864 Copy content Toggle raw display
7979 (T5+18T4++16)2 (T^{5} + 18 T^{4} + \cdots + 16)^{2} Copy content Toggle raw display
8383 T10+440T8++11505664 T^{10} + 440 T^{8} + \cdots + 11505664 Copy content Toggle raw display
8989 (T5+34T4+6752)2 (T^{5} + 34 T^{4} + \cdots - 6752)^{2} Copy content Toggle raw display
9797 T10++1266221056 T^{10} + \cdots + 1266221056 Copy content Toggle raw display
show more
show less