L(s) = 1 | − i·3-s + (2.23 − 0.126i)5-s + 3.92i·7-s − 9-s − 11-s − 2.60i·13-s + (−0.126 − 2.23i)15-s − 2.54i·17-s + 4.21·19-s + 3.92·21-s + 3.65i·23-s + (4.96 − 0.565i)25-s + i·27-s + 3.40·29-s + 9.61·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.998 − 0.0566i)5-s + 1.48i·7-s − 0.333·9-s − 0.301·11-s − 0.723i·13-s + (−0.0326 − 0.576i)15-s − 0.616i·17-s + 0.966·19-s + 0.856·21-s + 0.762i·23-s + (0.993 − 0.113i)25-s + 0.192i·27-s + 0.631·29-s + 1.72·31-s + ⋯ |
Λ(s)=(=(1320s/2ΓC(s)L(s)(0.998−0.0566i)Λ(2−s)
Λ(s)=(=(1320s/2ΓC(s+1/2)L(s)(0.998−0.0566i)Λ(1−s)
Degree: |
2 |
Conductor: |
1320
= 23⋅3⋅5⋅11
|
Sign: |
0.998−0.0566i
|
Analytic conductor: |
10.5402 |
Root analytic conductor: |
3.24657 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1320(529,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1320, ( :1/2), 0.998−0.0566i)
|
Particular Values
L(1) |
≈ |
2.013824711 |
L(21) |
≈ |
2.013824711 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+iT |
| 5 | 1+(−2.23+0.126i)T |
| 11 | 1+T |
good | 7 | 1−3.92iT−7T2 |
| 13 | 1+2.60iT−13T2 |
| 17 | 1+2.54iT−17T2 |
| 19 | 1−4.21T+19T2 |
| 23 | 1−3.65iT−23T2 |
| 29 | 1−3.40T+29T2 |
| 31 | 1−9.61T+31T2 |
| 37 | 1−6.71iT−37T2 |
| 41 | 1+4.53T+41T2 |
| 43 | 1+2.14iT−43T2 |
| 47 | 1−11.5iT−47T2 |
| 53 | 1+8.67iT−53T2 |
| 59 | 1−13.4T+59T2 |
| 61 | 1−7.78T+61T2 |
| 67 | 1−11.7iT−67T2 |
| 71 | 1+1.38T+71T2 |
| 73 | 1−5.75iT−73T2 |
| 79 | 1+2.93T+79T2 |
| 83 | 1+16.4iT−83T2 |
| 89 | 1+15.6T+89T2 |
| 97 | 1+7.29iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.743045768422915568613318813672, −8.714278665513436324959575560299, −8.215058836178849497695674645175, −7.10379822866485175595653848203, −6.20804419935666646067876146811, −5.50899196929967628474438740208, −4.96616205915339478148728450095, −3.00941280973980306987487135668, −2.50848682678238450181739080292, −1.22403795735428968035805199733,
1.01464679219656282296837923192, 2.42216054001782342089826904279, 3.63945234530643998121188040464, 4.49402664709133296481132752198, 5.32351365341865917733483626986, 6.41719488195800304008597184975, 7.00945406811493526428105329665, 8.083151348584149043398392305116, 8.937055880380474458911304438130, 9.939144595814732887307770776854