L(s) = 1 | − i·3-s + (2.23 − 0.126i)5-s + 3.92i·7-s − 9-s − 11-s − 2.60i·13-s + (−0.126 − 2.23i)15-s − 2.54i·17-s + 4.21·19-s + 3.92·21-s + 3.65i·23-s + (4.96 − 0.565i)25-s + i·27-s + 3.40·29-s + 9.61·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + (0.998 − 0.0566i)5-s + 1.48i·7-s − 0.333·9-s − 0.301·11-s − 0.723i·13-s + (−0.0326 − 0.576i)15-s − 0.616i·17-s + 0.966·19-s + 0.856·21-s + 0.762i·23-s + (0.993 − 0.113i)25-s + 0.192i·27-s + 0.631·29-s + 1.72·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0566i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0566i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.013824711\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.013824711\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + (-2.23 + 0.126i)T \) |
| 11 | \( 1 + T \) |
good | 7 | \( 1 - 3.92iT - 7T^{2} \) |
| 13 | \( 1 + 2.60iT - 13T^{2} \) |
| 17 | \( 1 + 2.54iT - 17T^{2} \) |
| 19 | \( 1 - 4.21T + 19T^{2} \) |
| 23 | \( 1 - 3.65iT - 23T^{2} \) |
| 29 | \( 1 - 3.40T + 29T^{2} \) |
| 31 | \( 1 - 9.61T + 31T^{2} \) |
| 37 | \( 1 - 6.71iT - 37T^{2} \) |
| 41 | \( 1 + 4.53T + 41T^{2} \) |
| 43 | \( 1 + 2.14iT - 43T^{2} \) |
| 47 | \( 1 - 11.5iT - 47T^{2} \) |
| 53 | \( 1 + 8.67iT - 53T^{2} \) |
| 59 | \( 1 - 13.4T + 59T^{2} \) |
| 61 | \( 1 - 7.78T + 61T^{2} \) |
| 67 | \( 1 - 11.7iT - 67T^{2} \) |
| 71 | \( 1 + 1.38T + 71T^{2} \) |
| 73 | \( 1 - 5.75iT - 73T^{2} \) |
| 79 | \( 1 + 2.93T + 79T^{2} \) |
| 83 | \( 1 + 16.4iT - 83T^{2} \) |
| 89 | \( 1 + 15.6T + 89T^{2} \) |
| 97 | \( 1 + 7.29iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.743045768422915568613318813672, −8.714278665513436324959575560299, −8.215058836178849497695674645175, −7.10379822866485175595653848203, −6.20804419935666646067876146811, −5.50899196929967628474438740208, −4.96616205915339478148728450095, −3.00941280973980306987487135668, −2.50848682678238450181739080292, −1.22403795735428968035805199733,
1.01464679219656282296837923192, 2.42216054001782342089826904279, 3.63945234530643998121188040464, 4.49402664709133296481132752198, 5.32351365341865917733483626986, 6.41719488195800304008597184975, 7.00945406811493526428105329665, 8.083151348584149043398392305116, 8.937055880380474458911304438130, 9.939144595814732887307770776854