L(s) = 1 | − 0.874·2-s − 1.23·4-s − 0.236·5-s + 2.82·8-s + 0.206·10-s − 0.540·11-s + 0.874·13-s + 5·17-s − 4.03·19-s + 0.291·20-s + 0.472·22-s − 5.99·23-s − 4.94·25-s − 0.763·26-s + 8.61·29-s − 6.53·31-s − 5.65·32-s − 4.37·34-s + 8.70·37-s + 3.52·38-s − 0.667·40-s + 8.70·41-s − 2.23·43-s + 0.667·44-s + 5.23·46-s + 7.47·47-s + 4.32·50-s + ⋯ |
L(s) = 1 | − 0.618·2-s − 0.618·4-s − 0.105·5-s + 0.999·8-s + 0.0652·10-s − 0.162·11-s + 0.242·13-s + 1.21·17-s − 0.925·19-s + 0.0652·20-s + 0.100·22-s − 1.24·23-s − 0.988·25-s − 0.149·26-s + 1.59·29-s − 1.17·31-s − 0.999·32-s − 0.749·34-s + 1.43·37-s + 0.572·38-s − 0.105·40-s + 1.35·41-s − 0.340·43-s + 0.100·44-s + 0.772·46-s + 1.08·47-s + 0.611·50-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9017054246 |
L(21) |
≈ |
0.9017054246 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+0.874T+2T2 |
| 5 | 1+0.236T+5T2 |
| 11 | 1+0.540T+11T2 |
| 13 | 1−0.874T+13T2 |
| 17 | 1−5T+17T2 |
| 19 | 1+4.03T+19T2 |
| 23 | 1+5.99T+23T2 |
| 29 | 1−8.61T+29T2 |
| 31 | 1+6.53T+31T2 |
| 37 | 1−8.70T+37T2 |
| 41 | 1−8.70T+41T2 |
| 43 | 1+2.23T+43T2 |
| 47 | 1−7.47T+47T2 |
| 53 | 1+3.16T+53T2 |
| 59 | 1−13.9T+59T2 |
| 61 | 1−0.540T+61T2 |
| 67 | 1+6.76T+67T2 |
| 71 | 1−6.73T+71T2 |
| 73 | 1−13.3T+73T2 |
| 79 | 1+2.52T+79T2 |
| 83 | 1−4.23T+83T2 |
| 89 | 1−11.7T+89T2 |
| 97 | 1−5.11T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.667843905372531757614818080561, −8.813308102720444799374580399624, −8.009296994460561051280804566014, −7.60180939339733156772551434906, −6.30223077681206188071927542378, −5.49076877856289621015410733327, −4.39871097506363557062342686000, −3.68071334079062017918626527098, −2.18290733472934049938907800144, −0.77429173659406431581889621458,
0.77429173659406431581889621458, 2.18290733472934049938907800144, 3.68071334079062017918626527098, 4.39871097506363557062342686000, 5.49076877856289621015410733327, 6.30223077681206188071927542378, 7.60180939339733156772551434906, 8.009296994460561051280804566014, 8.813308102720444799374580399624, 9.667843905372531757614818080561