Properties

Label 1323.2.a.be
Level $1323$
Weight $2$
Character orbit 1323.a
Self dual yes
Analytic conductor $10.564$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.5642081874\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + 1) q^{4} + (\beta_{3} + 2) q^{5} + 2 \beta_{2} q^{8} + (2 \beta_{2} + 3 \beta_1) q^{10} + ( - \beta_{2} - \beta_1) q^{11} - \beta_1 q^{13} + 5 q^{17} + ( - \beta_{2} + 3 \beta_1) q^{19}+ \cdots + (3 \beta_{2} - \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} + 8 q^{5} + 20 q^{17} + 28 q^{20} - 16 q^{22} + 16 q^{25} - 12 q^{26} + 8 q^{37} + 32 q^{38} + 8 q^{41} + 12 q^{46} + 12 q^{47} - 48 q^{58} + 20 q^{59} - 4 q^{62} - 16 q^{64} - 36 q^{67} + 20 q^{68}+ \cdots + 20 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.28825
−0.874032
0.874032
2.28825
−2.28825 0 3.23607 4.23607 0 0 −2.82843 0 −9.69316
1.2 −0.874032 0 −1.23607 −0.236068 0 0 2.82843 0 0.206331
1.3 0.874032 0 −1.23607 −0.236068 0 0 −2.82843 0 −0.206331
1.4 2.28825 0 3.23607 4.23607 0 0 2.82843 0 9.69316
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.a.be yes 4
3.b odd 2 1 1323.2.a.bb 4
7.b odd 2 1 1323.2.a.bb 4
21.c even 2 1 inner 1323.2.a.be yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1323.2.a.bb 4 3.b odd 2 1
1323.2.a.bb 4 7.b odd 2 1
1323.2.a.be yes 4 1.a even 1 1 trivial
1323.2.a.be yes 4 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1323))\):

\( T_{2}^{4} - 6T_{2}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{2} - 4T_{5} - 1 \) Copy content Toggle raw display
\( T_{13}^{4} - 6T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 6T^{2} + 4 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 14T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{4} - 6T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T - 5)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} - 46T^{2} + 484 \) Copy content Toggle raw display
$23$ \( T^{4} - 36T^{2} + 4 \) Copy content Toggle raw display
$29$ \( T^{4} - 126T^{2} + 3844 \) Copy content Toggle raw display
$31$ \( T^{4} - 54T^{2} + 484 \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T - 41)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 4 T - 41)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} - 5)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 6 T - 11)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 10)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 10 T - 55)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} - 14T^{2} + 4 \) Copy content Toggle raw display
$67$ \( (T^{2} + 18 T + 76)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 216T^{2} + 7744 \) Copy content Toggle raw display
$73$ \( T^{4} - 180T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T^{2} + 14 T + 29)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 4 T - 1)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 10 T - 20)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 30T^{2} + 100 \) Copy content Toggle raw display
show more
show less