L(s) = 1 | − 2·4-s − 5·13-s + 4·16-s + 7·19-s − 5·25-s + 4·31-s + 11·37-s + 8·43-s + 10·52-s + 61-s − 8·64-s + 5·67-s + 7·73-s − 14·76-s + 17·79-s + 19·97-s + 10·100-s + 13·103-s + 2·109-s + ⋯ |
L(s) = 1 | − 4-s − 1.38·13-s + 16-s + 1.60·19-s − 25-s + 0.718·31-s + 1.80·37-s + 1.21·43-s + 1.38·52-s + 0.128·61-s − 64-s + 0.610·67-s + 0.819·73-s − 1.60·76-s + 1.91·79-s + 1.92·97-s + 100-s + 1.28·103-s + 0.191·109-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.156536542 |
L(21) |
≈ |
1.156536542 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+pT2 |
| 5 | 1+pT2 |
| 11 | 1+pT2 |
| 13 | 1+5T+pT2 |
| 17 | 1+pT2 |
| 19 | 1−7T+pT2 |
| 23 | 1+pT2 |
| 29 | 1+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−11T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1+pT2 |
| 53 | 1+pT2 |
| 59 | 1+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−5T+pT2 |
| 71 | 1+pT2 |
| 73 | 1−7T+pT2 |
| 79 | 1−17T+pT2 |
| 83 | 1+pT2 |
| 89 | 1+pT2 |
| 97 | 1−19T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.692549886033731115950097335871, −9.003116301093652454576632877528, −7.83187954508823562149152602221, −7.53309190588908388391290020645, −6.19032093295709689179707806358, −5.27555176123571387068189863753, −4.61317128196167712173450637604, −3.61858250543880863713873154871, −2.48005247853672969845362220771, −0.794908582887598964605828839390,
0.794908582887598964605828839390, 2.48005247853672969845362220771, 3.61858250543880863713873154871, 4.61317128196167712173450637604, 5.27555176123571387068189863753, 6.19032093295709689179707806358, 7.53309190588908388391290020645, 7.83187954508823562149152602221, 9.003116301093652454576632877528, 9.692549886033731115950097335871