Properties

Label 1323.2.a.i.1.1
Level 13231323
Weight 22
Character 1323.1
Self dual yes
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 11
CM discriminant -3
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 27)
Fricke sign: 1-1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

Embedding invariants

Embedding label 1.1
Character χ\chi == 1323.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.00000q45.00000q13+4.00000q16+7.00000q195.00000q25+4.00000q31+11.0000q37+8.00000q43+10.0000q52+1.00000q618.00000q64+5.00000q67+7.00000q7314.0000q76+17.0000q79+19.0000q97+O(q100)q-2.00000 q^{4} -5.00000 q^{13} +4.00000 q^{16} +7.00000 q^{19} -5.00000 q^{25} +4.00000 q^{31} +11.0000 q^{37} +8.00000 q^{43} +10.0000 q^{52} +1.00000 q^{61} -8.00000 q^{64} +5.00000 q^{67} +7.00000 q^{73} -14.0000 q^{76} +17.0000 q^{79} +19.0000 q^{97} +O(q^{100})

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
33 0 0
44 −2.00000 −1.00000
55 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
66 0 0
77 0 0
88 0 0
99 0 0
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 −5.00000 −1.38675 −0.693375 0.720577i 0.743877π-0.743877\pi
−0.693375 + 0.720577i 0.743877π0.743877\pi
1414 0 0
1515 0 0
1616 4.00000 1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 7.00000 1.60591 0.802955 0.596040i 0.203260π-0.203260\pi
0.802955 + 0.596040i 0.203260π0.203260\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 −5.00000 −1.00000
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 4.00000 0.718421 0.359211 0.933257i 0.383046π-0.383046\pi
0.359211 + 0.933257i 0.383046π0.383046\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 11.0000 1.80839 0.904194 0.427121i 0.140472π-0.140472\pi
0.904194 + 0.427121i 0.140472π0.140472\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4242 0 0
4343 8.00000 1.21999 0.609994 0.792406i 0.291172π-0.291172\pi
0.609994 + 0.792406i 0.291172π0.291172\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 10.0000 1.38675
5353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 1.00000 0.128037 0.0640184 0.997949i 0.479608π-0.479608\pi
0.0640184 + 0.997949i 0.479608π0.479608\pi
6262 0 0
6363 0 0
6464 −8.00000 −1.00000
6565 0 0
6666 0 0
6767 5.00000 0.610847 0.305424 0.952217i 0.401202π-0.401202\pi
0.305424 + 0.952217i 0.401202π0.401202\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
7272 0 0
7373 7.00000 0.819288 0.409644 0.912245i 0.365653π-0.365653\pi
0.409644 + 0.912245i 0.365653π0.365653\pi
7474 0 0
7575 0 0
7676 −14.0000 −1.60591
7777 0 0
7878 0 0
7979 17.0000 1.91265 0.956325 0.292306i 0.0944227π-0.0944227\pi
0.956325 + 0.292306i 0.0944227π0.0944227\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 19.0000 1.92916 0.964579 0.263795i 0.0849741π-0.0849741\pi
0.964579 + 0.263795i 0.0849741π0.0849741\pi
9898 0 0
9999 0 0
100100 10.0000 1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 13.0000 1.28093 0.640464 0.767988i 0.278742π-0.278742\pi
0.640464 + 0.767988i 0.278742π0.278742\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 2.00000 0.191565 0.0957826 0.995402i 0.469465π-0.469465\pi
0.0957826 + 0.995402i 0.469465π0.469465\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −11.0000 −1.00000
122122 0 0
123123 0 0
124124 −8.00000 −0.718421
125125 0 0
126126 0 0
127127 20.0000 1.77471 0.887357 0.461084i 0.152539π-0.152539\pi
0.887357 + 0.461084i 0.152539π0.152539\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
138138 0 0
139139 −23.0000 −1.95083 −0.975417 0.220366i 0.929275π-0.929275\pi
−0.975417 + 0.220366i 0.929275π0.929275\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 −22.0000 −1.80839
149149 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
150150 0 0
151151 −19.0000 −1.54620 −0.773099 0.634285i 0.781294π-0.781294\pi
−0.773099 + 0.634285i 0.781294π0.781294\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −14.0000 −1.11732 −0.558661 0.829396i 0.688685π-0.688685\pi
−0.558661 + 0.829396i 0.688685π0.688685\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 −25.0000 −1.95815 −0.979076 0.203497i 0.934769π-0.934769\pi
−0.979076 + 0.203497i 0.934769π0.934769\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
168168 0 0
169169 12.0000 0.923077
170170 0 0
171171 0 0
172172 −16.0000 −1.21999
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 7.00000 0.520306 0.260153 0.965567i 0.416227π-0.416227\pi
0.260153 + 0.965567i 0.416227π0.416227\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 23.0000 1.65558 0.827788 0.561041i 0.189599π-0.189599\pi
0.827788 + 0.561041i 0.189599π0.189599\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 −11.0000 −0.779769 −0.389885 0.920864i 0.627485π-0.627485\pi
−0.389885 + 0.920864i 0.627485π0.627485\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −20.0000 −1.38675
209209 0 0
210210 0 0
211211 −13.0000 −0.894957 −0.447478 0.894295i 0.647678π-0.647678\pi
−0.447478 + 0.894295i 0.647678π0.647678\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 28.0000 1.87502 0.937509 0.347960i 0.113126π-0.113126\pi
0.937509 + 0.347960i 0.113126π0.113126\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
228228 0 0
229229 22.0000 1.45380 0.726900 0.686743i 0.240960π-0.240960\pi
0.726900 + 0.686743i 0.240960π0.240960\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 −17.0000 −1.09507 −0.547533 0.836784i 0.684433π-0.684433\pi
−0.547533 + 0.836784i 0.684433π0.684433\pi
242242 0 0
243243 0 0
244244 −2.00000 −0.128037
245245 0 0
246246 0 0
247247 −35.0000 −2.22700
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 16.0000 1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −10.0000 −0.610847
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 −29.0000 −1.76162 −0.880812 0.473466i 0.843003π-0.843003\pi
−0.880812 + 0.473466i 0.843003π0.843003\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 26.0000 1.56219 0.781094 0.624413i 0.214662π-0.214662\pi
0.781094 + 0.624413i 0.214662π0.214662\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
282282 0 0
283283 −32.0000 −1.90220 −0.951101 0.308879i 0.900046π-0.900046\pi
−0.951101 + 0.308879i 0.900046π0.900046\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 −14.0000 −0.819288
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 28.0000 1.60591
305305 0 0
306306 0 0
307307 16.0000 0.913168 0.456584 0.889680i 0.349073π-0.349073\pi
0.456584 + 0.889680i 0.349073π0.349073\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 −35.0000 −1.97832 −0.989158 0.146852i 0.953086π-0.953086\pi
−0.989158 + 0.146852i 0.953086π0.953086\pi
314314 0 0
315315 0 0
316316 −34.0000 −1.91265
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 25.0000 1.38675
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −1.00000 −0.0549650 −0.0274825 0.999622i 0.508749π-0.508749\pi
−0.0274825 + 0.999622i 0.508749π0.508749\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 5.00000 0.272367 0.136184 0.990684i 0.456516π-0.456516\pi
0.136184 + 0.990684i 0.456516π0.456516\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 37.0000 1.98056 0.990282 0.139072i 0.0444119π-0.0444119\pi
0.990282 + 0.139072i 0.0444119π0.0444119\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
360360 0 0
361361 30.0000 1.57895
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −35.0000 −1.82699 −0.913493 0.406855i 0.866625π-0.866625\pi
−0.913493 + 0.406855i 0.866625π0.866625\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −13.0000 −0.673114 −0.336557 0.941663i 0.609263π-0.609263\pi
−0.336557 + 0.941663i 0.609263π0.609263\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 29.0000 1.48963 0.744815 0.667271i 0.232538π-0.232538\pi
0.744815 + 0.667271i 0.232538π0.232538\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 −38.0000 −1.92916
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 34.0000 1.70641 0.853206 0.521575i 0.174655π-0.174655\pi
0.853206 + 0.521575i 0.174655π0.174655\pi
398398 0 0
399399 0 0
400400 −20.0000 −1.00000
401401 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
402402 0 0
403403 −20.0000 −0.996271
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 31.0000 1.53285 0.766426 0.642333i 0.222033π-0.222033\pi
0.766426 + 0.642333i 0.222033π0.222033\pi
410410 0 0
411411 0 0
412412 −26.0000 −1.28093
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
420420 0 0
421421 −19.0000 −0.926003 −0.463002 0.886357i 0.653228π-0.653228\pi
−0.463002 + 0.886357i 0.653228π0.653228\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 −2.00000 −0.0961139 −0.0480569 0.998845i 0.515303π-0.515303\pi
−0.0480569 + 0.998845i 0.515303π0.515303\pi
434434 0 0
435435 0 0
436436 −4.00000 −0.191565
437437 0 0
438438 0 0
439439 28.0000 1.33637 0.668184 0.743996i 0.267072π-0.267072\pi
0.668184 + 0.743996i 0.267072π0.267072\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −10.0000 −0.467780 −0.233890 0.972263i 0.575146π-0.575146\pi
−0.233890 + 0.972263i 0.575146π0.575146\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 23.0000 1.06890 0.534450 0.845200i 0.320519π-0.320519\pi
0.534450 + 0.845200i 0.320519π0.320519\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 −35.0000 −1.60591
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
480480 0 0
481481 −55.0000 −2.50778
482482 0 0
483483 0 0
484484 22.0000 1.00000
485485 0 0
486486 0 0
487487 −25.0000 −1.13286 −0.566429 0.824110i 0.691675π-0.691675\pi
−0.566429 + 0.824110i 0.691675π0.691675\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 16.0000 0.718421
497497 0 0
498498 0 0
499499 32.0000 1.43252 0.716258 0.697835i 0.245853π-0.245853\pi
0.716258 + 0.697835i 0.245853π0.245853\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 −40.0000 −1.77471
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 43.0000 1.88026 0.940129 0.340818i 0.110704π-0.110704\pi
0.940129 + 0.340818i 0.110704π0.110704\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 29.0000 1.24681 0.623404 0.781900i 0.285749π-0.285749\pi
0.623404 + 0.781900i 0.285749π0.285749\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −1.00000 −0.0427569 −0.0213785 0.999771i 0.506805π-0.506805\pi
−0.0213785 + 0.999771i 0.506805π0.506805\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 46.0000 1.95083
557557 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
558558 0 0
559559 −40.0000 −1.69182
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 −31.0000 −1.29731 −0.648655 0.761083i 0.724668π-0.724668\pi
−0.648655 + 0.761083i 0.724668π0.724668\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −11.0000 −0.457936 −0.228968 0.973434i 0.573535π-0.573535\pi
−0.228968 + 0.973434i 0.573535π0.573535\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 28.0000 1.15372
590590 0 0
591591 0 0
592592 44.0000 1.80839
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
600600 0 0
601601 −26.0000 −1.06056 −0.530281 0.847822i 0.677914π-0.677914\pi
−0.530281 + 0.847822i 0.677914π0.677914\pi
602602 0 0
603603 0 0
604604 38.0000 1.54620
605605 0 0
606606 0 0
607607 49.0000 1.98885 0.994424 0.105453i 0.0336291π-0.0336291\pi
0.994424 + 0.105453i 0.0336291π0.0336291\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 47.0000 1.89831 0.949156 0.314806i 0.101939π-0.101939\pi
0.949156 + 0.314806i 0.101939π0.101939\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
618618 0 0
619619 −17.0000 −0.683288 −0.341644 0.939829i 0.610984π-0.610984\pi
−0.341644 + 0.939829i 0.610984π0.610984\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 25.0000 1.00000
626626 0 0
627627 0 0
628628 28.0000 1.11732
629629 0 0
630630 0 0
631631 −43.0000 −1.71180 −0.855901 0.517139i 0.826997π-0.826997\pi
−0.855901 + 0.517139i 0.826997π0.826997\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 40.0000 1.57745 0.788723 0.614749i 0.210743π-0.210743\pi
0.788723 + 0.614749i 0.210743π0.210743\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 50.0000 1.95815
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
660660 0 0
661661 49.0000 1.90588 0.952940 0.303160i 0.0980418π-0.0980418\pi
0.952940 + 0.303160i 0.0980418π0.0980418\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −37.0000 −1.42625 −0.713123 0.701039i 0.752720π-0.752720\pi
−0.713123 + 0.701039i 0.752720π0.752720\pi
674674 0 0
675675 0 0
676676 −24.0000 −0.923077
677677 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 32.0000 1.21999
689689 0 0
690690 0 0
691691 −8.00000 −0.304334 −0.152167 0.988355i 0.548625π-0.548625\pi
−0.152167 + 0.988355i 0.548625π0.548625\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 77.0000 2.90411
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 53.0000 1.99046 0.995228 0.0975728i 0.0311079π-0.0311079\pi
0.995228 + 0.0975728i 0.0311079π0.0311079\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 −14.0000 −0.520306
725725 0 0
726726 0 0
727727 −44.0000 −1.63187 −0.815935 0.578144i 0.803777π-0.803777\pi
−0.815935 + 0.578144i 0.803777π0.803777\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 −50.0000 −1.84679 −0.923396 0.383849i 0.874598π-0.874598\pi
−0.923396 + 0.383849i 0.874598π0.874598\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −16.0000 −0.588570 −0.294285 0.955718i 0.595081π-0.595081\pi
−0.294285 + 0.955718i 0.595081π0.595081\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 41.0000 1.49611 0.748056 0.663636i 0.230988π-0.230988\pi
0.748056 + 0.663636i 0.230988π0.230988\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 29.0000 1.05402 0.527011 0.849858i 0.323312π-0.323312\pi
0.527011 + 0.849858i 0.323312π0.323312\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 49.0000 1.76699 0.883493 0.468445i 0.155186π-0.155186\pi
0.883493 + 0.468445i 0.155186π0.155186\pi
770770 0 0
771771 0 0
772772 −46.0000 −1.65558
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 −20.0000 −0.718421
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 31.0000 1.10503 0.552515 0.833503i 0.313668π-0.313668\pi
0.552515 + 0.833503i 0.313668π0.313668\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −5.00000 −0.177555
794794 0 0
795795 0 0
796796 22.0000 0.779769
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
810810 0 0
811811 −56.0000 −1.96643 −0.983213 0.182462i 0.941593π-0.941593\pi
−0.983213 + 0.182462i 0.941593π0.941593\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 56.0000 1.95919
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 5.00000 0.174289 0.0871445 0.996196i 0.472226π-0.472226\pi
0.0871445 + 0.996196i 0.472226π0.472226\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 7.00000 0.243120 0.121560 0.992584i 0.461210π-0.461210\pi
0.121560 + 0.992584i 0.461210π0.461210\pi
830830 0 0
831831 0 0
832832 40.0000 1.38675
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
840840 0 0
841841 −29.0000 −1.00000
842842 0 0
843843 0 0
844844 26.0000 0.894957
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −35.0000 −1.19838 −0.599189 0.800608i 0.704510π-0.704510\pi
−0.599189 + 0.800608i 0.704510π0.704510\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 13.0000 0.443554 0.221777 0.975097i 0.428814π-0.428814\pi
0.221777 + 0.975097i 0.428814π0.428814\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 −25.0000 −0.847093
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 59.0000 1.99229 0.996144 0.0877308i 0.0279615π-0.0279615\pi
0.996144 + 0.0877308i 0.0279615π0.0279615\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 47.0000 1.58168 0.790838 0.612026i 0.209645π-0.209645\pi
0.790838 + 0.612026i 0.209645π0.209645\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 −56.0000 −1.87502
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 −19.0000 −0.630885 −0.315442 0.948945i 0.602153π-0.602153\pi
−0.315442 + 0.948945i 0.602153π0.602153\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 −44.0000 −1.45380
917917 0 0
918918 0 0
919919 −52.0000 −1.71532 −0.857661 0.514216i 0.828083π-0.828083\pi
−0.857661 + 0.514216i 0.828083π0.828083\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 −55.0000 −1.80839
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 61.0000 1.99278 0.996392 0.0848755i 0.0270492π-0.0270492\pi
0.996392 + 0.0848755i 0.0270492π0.0270492\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 −35.0000 −1.13615
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −15.0000 −0.483871
962962 0 0
963963 0 0
964964 34.0000 1.09507
965965 0 0
966966 0 0
967967 41.0000 1.31847 0.659236 0.751936i 0.270880π-0.270880\pi
0.659236 + 0.751936i 0.270880π0.270880\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 4.00000 0.128037
977977 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 70.0000 2.22700
989989 0 0
990990 0 0
991991 −61.0000 −1.93773 −0.968864 0.247592i 0.920361π-0.920361\pi
−0.968864 + 0.247592i 0.920361π0.920361\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 10.0000 0.316703 0.158352 0.987383i 0.449382π-0.449382\pi
0.158352 + 0.987383i 0.449382π0.449382\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.2.a.i.1.1 1
3.2 odd 2 CM 1323.2.a.i.1.1 1
7.6 odd 2 27.2.a.a.1.1 1
21.20 even 2 27.2.a.a.1.1 1
28.27 even 2 432.2.a.e.1.1 1
35.13 even 4 675.2.b.f.649.2 2
35.27 even 4 675.2.b.f.649.1 2
35.34 odd 2 675.2.a.e.1.1 1
56.13 odd 2 1728.2.a.n.1.1 1
56.27 even 2 1728.2.a.o.1.1 1
63.13 odd 6 81.2.c.a.55.1 2
63.20 even 6 81.2.c.a.28.1 2
63.34 odd 6 81.2.c.a.28.1 2
63.41 even 6 81.2.c.a.55.1 2
77.76 even 2 3267.2.a.f.1.1 1
84.83 odd 2 432.2.a.e.1.1 1
91.90 odd 2 4563.2.a.e.1.1 1
105.62 odd 4 675.2.b.f.649.1 2
105.83 odd 4 675.2.b.f.649.2 2
105.104 even 2 675.2.a.e.1.1 1
119.118 odd 2 7803.2.a.k.1.1 1
133.132 even 2 9747.2.a.f.1.1 1
168.83 odd 2 1728.2.a.o.1.1 1
168.125 even 2 1728.2.a.n.1.1 1
189.13 odd 18 729.2.e.f.163.1 6
189.20 even 18 729.2.e.f.325.1 6
189.34 odd 18 729.2.e.f.325.1 6
189.41 even 18 729.2.e.f.163.1 6
189.76 odd 18 729.2.e.f.649.1 6
189.83 even 18 729.2.e.f.568.1 6
189.97 odd 18 729.2.e.f.82.1 6
189.104 even 18 729.2.e.f.406.1 6
189.139 odd 18 729.2.e.f.406.1 6
189.146 even 18 729.2.e.f.82.1 6
189.160 odd 18 729.2.e.f.568.1 6
189.167 even 18 729.2.e.f.649.1 6
231.230 odd 2 3267.2.a.f.1.1 1
252.83 odd 6 1296.2.i.i.433.1 2
252.139 even 6 1296.2.i.i.865.1 2
252.167 odd 6 1296.2.i.i.865.1 2
252.223 even 6 1296.2.i.i.433.1 2
273.272 even 2 4563.2.a.e.1.1 1
357.356 even 2 7803.2.a.k.1.1 1
399.398 odd 2 9747.2.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.a.a.1.1 1 7.6 odd 2
27.2.a.a.1.1 1 21.20 even 2
81.2.c.a.28.1 2 63.20 even 6
81.2.c.a.28.1 2 63.34 odd 6
81.2.c.a.55.1 2 63.13 odd 6
81.2.c.a.55.1 2 63.41 even 6
432.2.a.e.1.1 1 28.27 even 2
432.2.a.e.1.1 1 84.83 odd 2
675.2.a.e.1.1 1 35.34 odd 2
675.2.a.e.1.1 1 105.104 even 2
675.2.b.f.649.1 2 35.27 even 4
675.2.b.f.649.1 2 105.62 odd 4
675.2.b.f.649.2 2 35.13 even 4
675.2.b.f.649.2 2 105.83 odd 4
729.2.e.f.82.1 6 189.97 odd 18
729.2.e.f.82.1 6 189.146 even 18
729.2.e.f.163.1 6 189.13 odd 18
729.2.e.f.163.1 6 189.41 even 18
729.2.e.f.325.1 6 189.20 even 18
729.2.e.f.325.1 6 189.34 odd 18
729.2.e.f.406.1 6 189.104 even 18
729.2.e.f.406.1 6 189.139 odd 18
729.2.e.f.568.1 6 189.83 even 18
729.2.e.f.568.1 6 189.160 odd 18
729.2.e.f.649.1 6 189.76 odd 18
729.2.e.f.649.1 6 189.167 even 18
1296.2.i.i.433.1 2 252.83 odd 6
1296.2.i.i.433.1 2 252.223 even 6
1296.2.i.i.865.1 2 252.139 even 6
1296.2.i.i.865.1 2 252.167 odd 6
1323.2.a.i.1.1 1 1.1 even 1 trivial
1323.2.a.i.1.1 1 3.2 odd 2 CM
1728.2.a.n.1.1 1 56.13 odd 2
1728.2.a.n.1.1 1 168.125 even 2
1728.2.a.o.1.1 1 56.27 even 2
1728.2.a.o.1.1 1 168.83 odd 2
3267.2.a.f.1.1 1 77.76 even 2
3267.2.a.f.1.1 1 231.230 odd 2
4563.2.a.e.1.1 1 91.90 odd 2
4563.2.a.e.1.1 1 273.272 even 2
7803.2.a.k.1.1 1 119.118 odd 2
7803.2.a.k.1.1 1 357.356 even 2
9747.2.a.f.1.1 1 133.132 even 2
9747.2.a.f.1.1 1 399.398 odd 2