L(s) = 1 | − 1.83i·2-s − 1.36·4-s − 3.80·5-s − 1.16i·8-s + 6.98i·10-s + 1.16i·11-s + 5.54i·13-s − 4.86·16-s + 3.17·17-s − 0.631i·19-s + 5.19·20-s + 2.13·22-s + 1.76i·23-s + 9.50·25-s + 10.1·26-s + ⋯ |
L(s) = 1 | − 1.29i·2-s − 0.682·4-s − 1.70·5-s − 0.412i·8-s + 2.20i·10-s + 0.351i·11-s + 1.53i·13-s − 1.21·16-s + 0.770·17-s − 0.144i·19-s + 1.16·20-s + 0.455·22-s + 0.367i·23-s + 1.90·25-s + 1.99·26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.755+0.654i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(0.755+0.654i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.755+0.654i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(1322,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), 0.755+0.654i)
|
Particular Values
L(1) |
≈ |
1.024812126 |
L(21) |
≈ |
1.024812126 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+1.83iT−2T2 |
| 5 | 1+3.80T+5T2 |
| 11 | 1−1.16iT−11T2 |
| 13 | 1−5.54iT−13T2 |
| 17 | 1−3.17T+17T2 |
| 19 | 1+0.631iT−19T2 |
| 23 | 1−1.76iT−23T2 |
| 29 | 1+4.83iT−29T2 |
| 31 | 1−4.27iT−31T2 |
| 37 | 1−4.23T+37T2 |
| 41 | 1−4.56T+41T2 |
| 43 | 1−7.23T+43T2 |
| 47 | 1+2.54T+47T2 |
| 53 | 1−0.0724iT−53T2 |
| 59 | 1+6.98T+59T2 |
| 61 | 1−8.08iT−61T2 |
| 67 | 1−5.09T+67T2 |
| 71 | 1−4.76iT−71T2 |
| 73 | 1+5.59iT−73T2 |
| 79 | 1−17.0T+79T2 |
| 83 | 1−10.1T+83T2 |
| 89 | 1−11.5T+89T2 |
| 97 | 1−0.688iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.582595764841833931501094585746, −9.011053814124749980191044687375, −7.900261772619804341337886571194, −7.28051053922899935560748371366, −6.39267926055219585898076523317, −4.76010202162909877495256207836, −4.09369647882330595545681902357, −3.45439140550879819626301373808, −2.32605997206898775737152561212, −0.980921288260781301466566197420,
0.55936531763959491094071632986, 2.87855309289083544190784370148, 3.80169900344041070148985086700, 4.84315641366972731604292843634, 5.64457648830643036425349376821, 6.53881423522370949017263308870, 7.58630422203210480327402793900, 7.84322991035168180047030148981, 8.401812450673517555999448415969, 9.410926946753345201984868739879