Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1323,2,Mod(1322,1323)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1323.1322");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1323.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 12.0.13026266817859584.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 189) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1322.1 |
|
− | 2.49086i | 0 | −4.20440 | −1.23588 | 0 | 0 | 5.49086i | 0 | 3.07842i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.2 | − | 2.49086i | 0 | −4.20440 | 1.23588 | 0 | 0 | 5.49086i | 0 | − | 3.07842i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.3 | − | 1.83424i | 0 | −1.36445 | −3.80824 | 0 | 0 | − | 1.16576i | 0 | 6.98525i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.4 | − | 1.83424i | 0 | −1.36445 | 3.80824 | 0 | 0 | − | 1.16576i | 0 | − | 6.98525i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.5 | − | 0.656620i | 0 | 1.56885 | −3.31208 | 0 | 0 | − | 2.34338i | 0 | 2.17478i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.6 | − | 0.656620i | 0 | 1.56885 | 3.31208 | 0 | 0 | − | 2.34338i | 0 | − | 2.17478i | ||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.7 | 0.656620i | 0 | 1.56885 | −3.31208 | 0 | 0 | 2.34338i | 0 | − | 2.17478i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.8 | 0.656620i | 0 | 1.56885 | 3.31208 | 0 | 0 | 2.34338i | 0 | 2.17478i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.9 | 1.83424i | 0 | −1.36445 | −3.80824 | 0 | 0 | 1.16576i | 0 | − | 6.98525i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.10 | 1.83424i | 0 | −1.36445 | 3.80824 | 0 | 0 | 1.16576i | 0 | 6.98525i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.11 | 2.49086i | 0 | −4.20440 | −1.23588 | 0 | 0 | − | 5.49086i | 0 | − | 3.07842i | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1322.12 | 2.49086i | 0 | −4.20440 | 1.23588 | 0 | 0 | − | 5.49086i | 0 | 3.07842i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1323.2.c.d | 12 | |
3.b | odd | 2 | 1 | inner | 1323.2.c.d | 12 | |
7.b | odd | 2 | 1 | inner | 1323.2.c.d | 12 | |
7.c | even | 3 | 1 | 189.2.p.d | ✓ | 12 | |
7.d | odd | 6 | 1 | 189.2.p.d | ✓ | 12 | |
21.c | even | 2 | 1 | inner | 1323.2.c.d | 12 | |
21.g | even | 6 | 1 | 189.2.p.d | ✓ | 12 | |
21.h | odd | 6 | 1 | 189.2.p.d | ✓ | 12 | |
63.g | even | 3 | 1 | 567.2.s.f | 12 | ||
63.h | even | 3 | 1 | 567.2.i.f | 12 | ||
63.i | even | 6 | 1 | 567.2.i.f | 12 | ||
63.j | odd | 6 | 1 | 567.2.i.f | 12 | ||
63.k | odd | 6 | 1 | 567.2.s.f | 12 | ||
63.n | odd | 6 | 1 | 567.2.s.f | 12 | ||
63.s | even | 6 | 1 | 567.2.s.f | 12 | ||
63.t | odd | 6 | 1 | 567.2.i.f | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.p.d | ✓ | 12 | 7.c | even | 3 | 1 | |
189.2.p.d | ✓ | 12 | 7.d | odd | 6 | 1 | |
189.2.p.d | ✓ | 12 | 21.g | even | 6 | 1 | |
189.2.p.d | ✓ | 12 | 21.h | odd | 6 | 1 | |
567.2.i.f | 12 | 63.h | even | 3 | 1 | ||
567.2.i.f | 12 | 63.i | even | 6 | 1 | ||
567.2.i.f | 12 | 63.j | odd | 6 | 1 | ||
567.2.i.f | 12 | 63.t | odd | 6 | 1 | ||
567.2.s.f | 12 | 63.g | even | 3 | 1 | ||
567.2.s.f | 12 | 63.k | odd | 6 | 1 | ||
567.2.s.f | 12 | 63.n | odd | 6 | 1 | ||
567.2.s.f | 12 | 63.s | even | 6 | 1 | ||
1323.2.c.d | 12 | 1.a | even | 1 | 1 | trivial | |
1323.2.c.d | 12 | 3.b | odd | 2 | 1 | inner | |
1323.2.c.d | 12 | 7.b | odd | 2 | 1 | inner | |
1323.2.c.d | 12 | 21.c | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .