Properties

Label 1323.2.c.d
Level 13231323
Weight 22
Character orbit 1323.c
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 1212
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(1322,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1322");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 1212
Coefficient field: 12.0.13026266817859584.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x129x10+59x8180x6+403x4198x2+81 x^{12} - 9x^{10} + 59x^{8} - 180x^{6} + 403x^{4} - 198x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 2634 2^{6}\cdot 3^{4}
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β8q2+(β61)q4+β1q5+(β10β8)q8+(β11+β5)q10+(β10+β8)q11+(β7+β5)q13+(β9+β6)q16++(4β7+2β5)q97+O(q100) q + \beta_{8} q^{2} + ( - \beta_{6} - 1) q^{4} + \beta_1 q^{5} + (\beta_{10} - \beta_{8}) q^{8} + (\beta_{11} + \beta_{5}) q^{10} + ( - \beta_{10} + \beta_{8}) q^{11} + (\beta_{7} + \beta_{5}) q^{13} + (\beta_{9} + \beta_{6}) q^{16}+ \cdots + ( - 4 \beta_{7} + 2 \beta_{5}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q16q4+8q1640q22+48q2516q37+20q4328q4640q58+28q6472q67+72q7912q85+148q88+O(q100) 12 q - 16 q^{4} + 8 q^{16} - 40 q^{22} + 48 q^{25} - 16 q^{37} + 20 q^{43} - 28 q^{46} - 40 q^{58} + 28 q^{64} - 72 q^{67} + 72 q^{79} - 12 q^{85} + 148 q^{88}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x129x10+59x8180x6+403x4198x2+81 x^{12} - 9x^{10} + 59x^{8} - 180x^{6} + 403x^{4} - 198x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== (1298ν1110953ν9+71803ν7202311ν5+490451ν3438921ν)/197955 ( 1298\nu^{11} - 10953\nu^{9} + 71803\nu^{7} - 202311\nu^{5} + 490451\nu^{3} - 438921\nu ) / 197955 Copy content Toggle raw display
β2\beta_{2}== (8ν11117ν9+850ν73420ν5+7895ν37056ν)/747 ( 8\nu^{11} - 117\nu^{9} + 850\nu^{7} - 3420\nu^{5} + 7895\nu^{3} - 7056\nu ) / 747 Copy content Toggle raw display
β3\beta_{3}== (3734ν11+34254ν9224554ν7+743958ν51731773ν3+1545408ν)/197955 ( -3734\nu^{11} + 34254\nu^{9} - 224554\nu^{7} + 743958\nu^{5} - 1731773\nu^{3} + 1545408\nu ) / 197955 Copy content Toggle raw display
β4\beta_{4}== (1298ν1110953ν9+71803ν7202311ν5+490451ν343011ν)/65985 ( 1298\nu^{11} - 10953\nu^{9} + 71803\nu^{7} - 202311\nu^{5} + 490451\nu^{3} - 43011\nu ) / 65985 Copy content Toggle raw display
β5\beta_{5}== (787ν1010047ν8+58532ν6191649ν4+281254ν289064)/65985 ( 787\nu^{10} - 10047\nu^{8} + 58532\nu^{6} - 191649\nu^{4} + 281254\nu^{2} - 89064 ) / 65985 Copy content Toggle raw display
β6\beta_{6}== (288ν101888ν8+9933ν612896ν4+6336ν2+68439)/21995 ( 288\nu^{10} - 1888\nu^{8} + 9933\nu^{6} - 12896\nu^{4} + 6336\nu^{2} + 68439 ) / 21995 Copy content Toggle raw display
β7\beta_{7}== (2596ν1021906ν8+143606ν6404622ν4+980902ν2283977)/197955 ( 2596\nu^{10} - 21906\nu^{8} + 143606\nu^{6} - 404622\nu^{4} + 980902\nu^{2} - 283977 ) / 197955 Copy content Toggle raw display
β8\beta_{8}== (5192ν1143812ν9+287212ν7809244ν5+1763849ν3172044ν)/197955 ( 5192\nu^{11} - 43812\nu^{9} + 287212\nu^{7} - 809244\nu^{5} + 1763849\nu^{3} - 172044\nu ) / 197955 Copy content Toggle raw display
β9\beta_{9}== (333ν10+2183ν89423ν6+14911ν47326ν2+48026)/21995 ( -333\nu^{10} + 2183\nu^{8} - 9423\nu^{6} + 14911\nu^{4} - 7326\nu^{2} + 48026 ) / 21995 Copy content Toggle raw display
β10\beta_{10}== (88ν11+783ν94868ν7+13716ν526581ν3+2916ν)/2385 ( -88\nu^{11} + 783\nu^{9} - 4868\nu^{7} + 13716\nu^{5} - 26581\nu^{3} + 2916\nu ) / 2385 Copy content Toggle raw display
β11\beta_{11}== (2353ν10+20313ν8133163ν6+393741ν4843586ν2+248931)/65985 ( -2353\nu^{10} + 20313\nu^{8} - 133163\nu^{6} + 393741\nu^{4} - 843586\nu^{2} + 248931 ) / 65985 Copy content Toggle raw display
ν\nu== (β43β1)/6 ( \beta_{4} - 3\beta_1 ) / 6 Copy content Toggle raw display
ν2\nu^{2}== (3β11β9+9β72β6+10)/6 ( 3\beta_{11} - \beta_{9} + 9\beta_{7} - 2\beta_{6} + 10 ) / 6 Copy content Toggle raw display
ν3\nu^{3}== (3β8+4β4)/3 ( -3\beta_{8} + 4\beta_{4} ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (5β11+2β9+12β7+3β6+β514)/2 ( 5\beta_{11} + 2\beta_{9} + 12\beta_{7} + 3\beta_{6} + \beta_{5} - 14 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (3β1018β8+17β4+18β3+3β2+51β1)/6 ( -3\beta_{10} - 18\beta_{8} + 17\beta_{4} + 18\beta_{3} + 3\beta_{2} + 51\beta_1 ) / 6 Copy content Toggle raw display
ν6\nu^{6}== (32β9+37β6185)/3 ( 32\beta_{9} + 37\beta_{6} - 185 ) / 3 Copy content Toggle raw display
ν7\nu^{7}== (27β10+96β874β4+96β3+27β2+222β1)/6 ( 27\beta_{10} + 96\beta_{8} - 74\beta_{4} + 96\beta_{3} + 27\beta_{2} + 222\beta_1 ) / 6 Copy content Toggle raw display
ν8\nu^{8}== (106β11+55β9222β7+51β659β5277)/2 ( -106\beta_{11} + 55\beta_{9} - 222\beta_{7} + 51\beta_{6} - 59\beta_{5} - 277 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (177β10+495β8328β4)/3 ( 177\beta_{10} + 495\beta_{8} - 328\beta_{4} ) / 3 Copy content Toggle raw display
ν10\nu^{10}== (1479β11835β92952β7644β61026β5+3787)/6 ( -1479\beta_{11} - 835\beta_{9} - 2952\beta_{7} - 644\beta_{6} - 1026\beta_{5} + 3787 ) / 6 Copy content Toggle raw display
ν11\nu^{11}== (1026β10+2505β81477β42505β31026β24431β1)/6 ( 1026\beta_{10} + 2505\beta_{8} - 1477\beta_{4} - 2505\beta_{3} - 1026\beta_{2} - 4431\beta_1 ) / 6 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1322.1
0.617942 0.356769i
−0.617942 0.356769i
1.90412 + 1.09935i
−1.90412 + 1.09935i
1.65604 0.956115i
−1.65604 0.956115i
1.65604 + 0.956115i
−1.65604 + 0.956115i
1.90412 1.09935i
−1.90412 1.09935i
0.617942 + 0.356769i
−0.617942 + 0.356769i
2.49086i 0 −4.20440 −1.23588 0 0 5.49086i 0 3.07842i
1322.2 2.49086i 0 −4.20440 1.23588 0 0 5.49086i 0 3.07842i
1322.3 1.83424i 0 −1.36445 −3.80824 0 0 1.16576i 0 6.98525i
1322.4 1.83424i 0 −1.36445 3.80824 0 0 1.16576i 0 6.98525i
1322.5 0.656620i 0 1.56885 −3.31208 0 0 2.34338i 0 2.17478i
1322.6 0.656620i 0 1.56885 3.31208 0 0 2.34338i 0 2.17478i
1322.7 0.656620i 0 1.56885 −3.31208 0 0 2.34338i 0 2.17478i
1322.8 0.656620i 0 1.56885 3.31208 0 0 2.34338i 0 2.17478i
1322.9 1.83424i 0 −1.36445 −3.80824 0 0 1.16576i 0 6.98525i
1322.10 1.83424i 0 −1.36445 3.80824 0 0 1.16576i 0 6.98525i
1322.11 2.49086i 0 −4.20440 −1.23588 0 0 5.49086i 0 3.07842i
1322.12 2.49086i 0 −4.20440 1.23588 0 0 5.49086i 0 3.07842i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1322.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.c.d 12
3.b odd 2 1 inner 1323.2.c.d 12
7.b odd 2 1 inner 1323.2.c.d 12
7.c even 3 1 189.2.p.d 12
7.d odd 6 1 189.2.p.d 12
21.c even 2 1 inner 1323.2.c.d 12
21.g even 6 1 189.2.p.d 12
21.h odd 6 1 189.2.p.d 12
63.g even 3 1 567.2.s.f 12
63.h even 3 1 567.2.i.f 12
63.i even 6 1 567.2.i.f 12
63.j odd 6 1 567.2.i.f 12
63.k odd 6 1 567.2.s.f 12
63.n odd 6 1 567.2.s.f 12
63.s even 6 1 567.2.s.f 12
63.t odd 6 1 567.2.i.f 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.p.d 12 7.c even 3 1
189.2.p.d 12 7.d odd 6 1
189.2.p.d 12 21.g even 6 1
189.2.p.d 12 21.h odd 6 1
567.2.i.f 12 63.h even 3 1
567.2.i.f 12 63.i even 6 1
567.2.i.f 12 63.j odd 6 1
567.2.i.f 12 63.t odd 6 1
567.2.s.f 12 63.g even 3 1
567.2.s.f 12 63.k odd 6 1
567.2.s.f 12 63.n odd 6 1
567.2.s.f 12 63.s even 6 1
1323.2.c.d 12 1.a even 1 1 trivial
1323.2.c.d 12 3.b odd 2 1 inner
1323.2.c.d 12 7.b odd 2 1 inner
1323.2.c.d 12 21.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T26+10T24+25T22+9 T_{2}^{6} + 10T_{2}^{4} + 25T_{2}^{2} + 9 acting on S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T6+10T4+25T2+9)2 (T^{6} + 10 T^{4} + 25 T^{2} + 9)^{2} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 (T627T4+243)2 (T^{6} - 27 T^{4} + \cdots - 243)^{2} Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 (T6+37T4++225)2 (T^{6} + 37 T^{4} + \cdots + 225)^{2} Copy content Toggle raw display
1313 (T6+42T4++675)2 (T^{6} + 42 T^{4} + \cdots + 675)^{2} Copy content Toggle raw display
1717 (T630T4+243)2 (T^{6} - 30 T^{4} + \cdots - 243)^{2} Copy content Toggle raw display
1919 (T6+51T4++243)2 (T^{6} + 51 T^{4} + \cdots + 243)^{2} Copy content Toggle raw display
2323 (T6+94T4++729)2 (T^{6} + 94 T^{4} + \cdots + 729)^{2} Copy content Toggle raw display
2929 (T6+37T4++81)2 (T^{6} + 37 T^{4} + \cdots + 81)^{2} Copy content Toggle raw display
3131 (T6+138T4++64827)2 (T^{6} + 138 T^{4} + \cdots + 64827)^{2} Copy content Toggle raw display
3737 (T3+4T219T67)4 (T^{3} + 4 T^{2} - 19 T - 67)^{4} Copy content Toggle raw display
4141 (T6114T4+243)2 (T^{6} - 114 T^{4} + \cdots - 243)^{2} Copy content Toggle raw display
4343 (T35T216T1)4 (T^{3} - 5 T^{2} - 16 T - 1)^{4} Copy content Toggle raw display
4747 (T6135T4+19683)2 (T^{6} - 135 T^{4} + \cdots - 19683)^{2} Copy content Toggle raw display
5353 (T6+118T4++9)2 (T^{6} + 118 T^{4} + \cdots + 9)^{2} Copy content Toggle raw display
5959 (T663T4+2187)2 (T^{6} - 63 T^{4} + \cdots - 2187)^{2} Copy content Toggle raw display
6161 (T6+129T4++49923)2 (T^{6} + 129 T^{4} + \cdots + 49923)^{2} Copy content Toggle raw display
6767 (T3+18T2+677)4 (T^{3} + 18 T^{2} + \cdots - 677)^{4} Copy content Toggle raw display
7171 (T6+85T4++19881)2 (T^{6} + 85 T^{4} + \cdots + 19881)^{2} Copy content Toggle raw display
7373 (T6+195T4++177147)2 (T^{6} + 195 T^{4} + \cdots + 177147)^{2} Copy content Toggle raw display
7979 (T318T2+15T+7)4 (T^{3} - 18 T^{2} + 15 T + 7)^{4} Copy content Toggle raw display
8383 (T6159T4+6075)2 (T^{6} - 159 T^{4} + \cdots - 6075)^{2} Copy content Toggle raw display
8989 (T6201T4+87723)2 (T^{6} - 201 T^{4} + \cdots - 87723)^{2} Copy content Toggle raw display
9797 (T6+204T4++1728)2 (T^{6} + 204 T^{4} + \cdots + 1728)^{2} Copy content Toggle raw display
show more
show less