L(s) = 1 | + (0.849 − 1.47i)2-s + (−0.444 − 0.769i)4-s + (1.79 + 3.10i)5-s + 1.88·8-s + 6.09·10-s + (−1.40 + 2.43i)11-s + (0.5 + 0.866i)13-s + (2.49 − 4.31i)16-s − 4.11·17-s + 0.888·19-s + (1.59 − 2.76i)20-s + (2.38 + 4.13i)22-s + (2.93 + 5.08i)23-s + (−3.93 + 6.82i)25-s + 1.69·26-s + ⋯ |
L(s) = 1 | + (0.600 − 1.04i)2-s + (−0.222 − 0.384i)4-s + (0.802 + 1.38i)5-s + 0.667·8-s + 1.92·10-s + (−0.423 + 0.733i)11-s + (0.138 + 0.240i)13-s + (0.623 − 1.07i)16-s − 0.997·17-s + 0.203·19-s + (0.356 − 0.617i)20-s + (0.509 + 0.882i)22-s + (0.612 + 1.06i)23-s + (−0.787 + 1.36i)25-s + 0.333·26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.989−0.145i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(0.989−0.145i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.989−0.145i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), 0.989−0.145i)
|
Particular Values
L(1) |
≈ |
2.733915035 |
L(21) |
≈ |
2.733915035 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−0.849+1.47i)T+(−1−1.73i)T2 |
| 5 | 1+(−1.79−3.10i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.40−2.43i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.5−0.866i)T+(−6.5+11.2i)T2 |
| 17 | 1+4.11T+17T2 |
| 19 | 1−0.888T+19T2 |
| 23 | 1+(−2.93−5.08i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.849−1.47i)T+(−14.5−25.1i)T2 |
| 31 | 1+(3.49+6.05i)T+(−15.5+26.8i)T2 |
| 37 | 1−4.76T+37T2 |
| 41 | 1+(−2.70−4.68i)T+(−20.5+35.5i)T2 |
| 43 | 1+(2.60−4.51i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.33+2.30i)T+(−23.5−40.7i)T2 |
| 53 | 1−0.123T+53T2 |
| 59 | 1+(−4.43−7.68i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−1.93+3.35i)T+(−30.5−52.8i)T2 |
| 67 | 1+(6.15+10.6i)T+(−33.5+58.0i)T2 |
| 71 | 1−2.87T+71T2 |
| 73 | 1−10.6T+73T2 |
| 79 | 1+(−3.54+6.13i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−2.05+3.56i)T+(−41.5−71.8i)T2 |
| 89 | 1−9.60T+89T2 |
| 97 | 1+(−3.66+6.34i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.823481960215475884213411397038, −9.336345103023807331900836891114, −7.79568996140009908928008632609, −7.14782728326546765930230335525, −6.32783263024313804384296774459, −5.30064130726495520714260941970, −4.29560433734837518888377513956, −3.28671302026344947800047341609, −2.49022990805779582779462559220, −1.76617313827421943088596525522,
0.959147395340411066769004114683, 2.30016943899736280641930683705, 3.94056782090519340924507797513, 4.93638861308477700226044222074, 5.35631106018319872019443444613, 6.16054487269092100459347499199, 6.92030698961121385745287050834, 8.035844792324329767183263503597, 8.658859188276740665480286185771, 9.317607950618066358470961629619