L(s) = 1 | + (0.849 − 1.47i)2-s + (−0.444 − 0.769i)4-s + (1.79 + 3.10i)5-s + 1.88·8-s + 6.09·10-s + (−1.40 + 2.43i)11-s + (0.5 + 0.866i)13-s + (2.49 − 4.31i)16-s − 4.11·17-s + 0.888·19-s + (1.59 − 2.76i)20-s + (2.38 + 4.13i)22-s + (2.93 + 5.08i)23-s + (−3.93 + 6.82i)25-s + 1.69·26-s + ⋯ |
L(s) = 1 | + (0.600 − 1.04i)2-s + (−0.222 − 0.384i)4-s + (0.802 + 1.38i)5-s + 0.667·8-s + 1.92·10-s + (−0.423 + 0.733i)11-s + (0.138 + 0.240i)13-s + (0.623 − 1.07i)16-s − 0.997·17-s + 0.203·19-s + (0.356 − 0.617i)20-s + (0.509 + 0.882i)22-s + (0.612 + 1.06i)23-s + (−0.787 + 1.36i)25-s + 0.333·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 - 0.145i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.989 - 0.145i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.733915035\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.733915035\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.849 + 1.47i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.79 - 3.10i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.40 - 2.43i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.11T + 17T^{2} \) |
| 19 | \( 1 - 0.888T + 19T^{2} \) |
| 23 | \( 1 + (-2.93 - 5.08i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.849 - 1.47i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.49 + 6.05i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.76T + 37T^{2} \) |
| 41 | \( 1 + (-2.70 - 4.68i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.60 - 4.51i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.33 + 2.30i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 0.123T + 53T^{2} \) |
| 59 | \( 1 + (-4.43 - 7.68i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.93 + 3.35i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.15 + 10.6i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 2.87T + 71T^{2} \) |
| 73 | \( 1 - 10.6T + 73T^{2} \) |
| 79 | \( 1 + (-3.54 + 6.13i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.05 + 3.56i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9.60T + 89T^{2} \) |
| 97 | \( 1 + (-3.66 + 6.34i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.823481960215475884213411397038, −9.336345103023807331900836891114, −7.79568996140009908928008632609, −7.14782728326546765930230335525, −6.32783263024313804384296774459, −5.30064130726495520714260941970, −4.29560433734837518888377513956, −3.28671302026344947800047341609, −2.49022990805779582779462559220, −1.76617313827421943088596525522,
0.959147395340411066769004114683, 2.30016943899736280641930683705, 3.94056782090519340924507797513, 4.93638861308477700226044222074, 5.35631106018319872019443444613, 6.16054487269092100459347499199, 6.92030698961121385745287050834, 8.035844792324329767183263503597, 8.658859188276740665480286185771, 9.317607950618066358470961629619