Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1323,2,Mod(442,1323)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1323.442");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1323.f (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 6.0.309123.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
442.1 |
|
−1.23025 | − | 2.13086i | 0 | −2.02704 | + | 3.51094i | 1.29679 | − | 2.24611i | 0 | 0 | 5.05408 | 0 | −6.38151 | ||||||||||||||||||||||||||||||
442.2 | −0.119562 | − | 0.207087i | 0 | 0.971410 | − | 1.68253i | −0.590972 | + | 1.02359i | 0 | 0 | −0.942820 | 0 | 0.282630 | |||||||||||||||||||||||||||||||
442.3 | 0.849814 | + | 1.47192i | 0 | −0.444368 | + | 0.769668i | 1.79418 | − | 3.10761i | 0 | 0 | 1.88874 | 0 | 6.09888 | |||||||||||||||||||||||||||||||
883.1 | −1.23025 | + | 2.13086i | 0 | −2.02704 | − | 3.51094i | 1.29679 | + | 2.24611i | 0 | 0 | 5.05408 | 0 | −6.38151 | |||||||||||||||||||||||||||||||
883.2 | −0.119562 | + | 0.207087i | 0 | 0.971410 | + | 1.68253i | −0.590972 | − | 1.02359i | 0 | 0 | −0.942820 | 0 | 0.282630 | |||||||||||||||||||||||||||||||
883.3 | 0.849814 | − | 1.47192i | 0 | −0.444368 | − | 0.769668i | 1.79418 | + | 3.10761i | 0 | 0 | 1.88874 | 0 | 6.09888 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1323.2.f.c | 6 | |
3.b | odd | 2 | 1 | 441.2.f.d | 6 | ||
7.b | odd | 2 | 1 | 189.2.f.a | 6 | ||
7.c | even | 3 | 1 | 1323.2.g.b | 6 | ||
7.c | even | 3 | 1 | 1323.2.h.e | 6 | ||
7.d | odd | 6 | 1 | 1323.2.g.c | 6 | ||
7.d | odd | 6 | 1 | 1323.2.h.d | 6 | ||
9.c | even | 3 | 1 | inner | 1323.2.f.c | 6 | |
9.c | even | 3 | 1 | 3969.2.a.p | 3 | ||
9.d | odd | 6 | 1 | 441.2.f.d | 6 | ||
9.d | odd | 6 | 1 | 3969.2.a.m | 3 | ||
21.c | even | 2 | 1 | 63.2.f.b | ✓ | 6 | |
21.g | even | 6 | 1 | 441.2.g.e | 6 | ||
21.g | even | 6 | 1 | 441.2.h.c | 6 | ||
21.h | odd | 6 | 1 | 441.2.g.d | 6 | ||
21.h | odd | 6 | 1 | 441.2.h.b | 6 | ||
28.d | even | 2 | 1 | 3024.2.r.g | 6 | ||
63.g | even | 3 | 1 | 1323.2.h.e | 6 | ||
63.h | even | 3 | 1 | 1323.2.g.b | 6 | ||
63.i | even | 6 | 1 | 441.2.g.e | 6 | ||
63.j | odd | 6 | 1 | 441.2.g.d | 6 | ||
63.k | odd | 6 | 1 | 1323.2.h.d | 6 | ||
63.l | odd | 6 | 1 | 189.2.f.a | 6 | ||
63.l | odd | 6 | 1 | 567.2.a.g | 3 | ||
63.n | odd | 6 | 1 | 441.2.h.b | 6 | ||
63.o | even | 6 | 1 | 63.2.f.b | ✓ | 6 | |
63.o | even | 6 | 1 | 567.2.a.d | 3 | ||
63.s | even | 6 | 1 | 441.2.h.c | 6 | ||
63.t | odd | 6 | 1 | 1323.2.g.c | 6 | ||
84.h | odd | 2 | 1 | 1008.2.r.k | 6 | ||
252.s | odd | 6 | 1 | 1008.2.r.k | 6 | ||
252.s | odd | 6 | 1 | 9072.2.a.bq | 3 | ||
252.bi | even | 6 | 1 | 3024.2.r.g | 6 | ||
252.bi | even | 6 | 1 | 9072.2.a.cd | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.2.f.b | ✓ | 6 | 21.c | even | 2 | 1 | |
63.2.f.b | ✓ | 6 | 63.o | even | 6 | 1 | |
189.2.f.a | 6 | 7.b | odd | 2 | 1 | ||
189.2.f.a | 6 | 63.l | odd | 6 | 1 | ||
441.2.f.d | 6 | 3.b | odd | 2 | 1 | ||
441.2.f.d | 6 | 9.d | odd | 6 | 1 | ||
441.2.g.d | 6 | 21.h | odd | 6 | 1 | ||
441.2.g.d | 6 | 63.j | odd | 6 | 1 | ||
441.2.g.e | 6 | 21.g | even | 6 | 1 | ||
441.2.g.e | 6 | 63.i | even | 6 | 1 | ||
441.2.h.b | 6 | 21.h | odd | 6 | 1 | ||
441.2.h.b | 6 | 63.n | odd | 6 | 1 | ||
441.2.h.c | 6 | 21.g | even | 6 | 1 | ||
441.2.h.c | 6 | 63.s | even | 6 | 1 | ||
567.2.a.d | 3 | 63.o | even | 6 | 1 | ||
567.2.a.g | 3 | 63.l | odd | 6 | 1 | ||
1008.2.r.k | 6 | 84.h | odd | 2 | 1 | ||
1008.2.r.k | 6 | 252.s | odd | 6 | 1 | ||
1323.2.f.c | 6 | 1.a | even | 1 | 1 | trivial | |
1323.2.f.c | 6 | 9.c | even | 3 | 1 | inner | |
1323.2.g.b | 6 | 7.c | even | 3 | 1 | ||
1323.2.g.b | 6 | 63.h | even | 3 | 1 | ||
1323.2.g.c | 6 | 7.d | odd | 6 | 1 | ||
1323.2.g.c | 6 | 63.t | odd | 6 | 1 | ||
1323.2.h.d | 6 | 7.d | odd | 6 | 1 | ||
1323.2.h.d | 6 | 63.k | odd | 6 | 1 | ||
1323.2.h.e | 6 | 7.c | even | 3 | 1 | ||
1323.2.h.e | 6 | 63.g | even | 3 | 1 | ||
3024.2.r.g | 6 | 28.d | even | 2 | 1 | ||
3024.2.r.g | 6 | 252.bi | even | 6 | 1 | ||
3969.2.a.m | 3 | 9.d | odd | 6 | 1 | ||
3969.2.a.p | 3 | 9.c | even | 3 | 1 | ||
9072.2.a.bq | 3 | 252.s | odd | 6 | 1 | ||
9072.2.a.cd | 3 | 252.bi | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|