Properties

Label 1323.2.f.c
Level 13231323
Weight 22
Character orbit 1323.f
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(442,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.442");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.f (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5+β1)q2+(β5+β4+β21)q4+(2β4β2+2)q5+(β3β1+2)q8+(3β1+1)q10+(2β5β4+2β1)q11++(5β5+2β4++5β1)q97+O(q100) q + ( - \beta_{5} + \beta_1) q^{2} + (\beta_{5} + \beta_{4} + \beta_{2} - 1) q^{4} + ( - 2 \beta_{4} - \beta_{2} + 2) q^{5} + (\beta_{3} - \beta_1 + 2) q^{8} + (3 \beta_1 + 1) q^{10} + (2 \beta_{5} - \beta_{4} + \cdots - 2 \beta_1) q^{11}+ \cdots + ( - 5 \beta_{5} + 2 \beta_{4} + \cdots + 5 \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq23q4+5q5+12q82q11+3q133q1624q17+6q19+16q20+15q226q252q26+q293q318q323q346q378q38++3q97+O(q100) 6 q - q^{2} - 3 q^{4} + 5 q^{5} + 12 q^{8} - 2 q^{11} + 3 q^{13} - 3 q^{16} - 24 q^{17} + 6 q^{19} + 16 q^{20} + 15 q^{22} - 6 q^{25} - 2 q^{26} + q^{29} - 3 q^{31} - 8 q^{32} - 3 q^{34} - 6 q^{37} - 8 q^{38}+ \cdots + 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν2ν+2 \nu^{2} - \nu + 2 Copy content Toggle raw display
β2\beta_{2}== (ν5+ν48ν3+5ν218ν+6)/3 ( -\nu^{5} + \nu^{4} - 8\nu^{3} + 5\nu^{2} - 18\nu + 6 ) / 3 Copy content Toggle raw display
β3\beta_{3}== ν42ν3+6ν25ν+3 \nu^{4} - 2\nu^{3} + 6\nu^{2} - 5\nu + 3 Copy content Toggle raw display
β4\beta_{4}== (2ν5+5ν416ν3+19ν221ν+9)/3 ( -2\nu^{5} + 5\nu^{4} - 16\nu^{3} + 19\nu^{2} - 21\nu + 9 ) / 3 Copy content Toggle raw display
β5\beta_{5}== (2ν55ν4+19ν322ν2+30ν9)/3 ( 2\nu^{5} - 5\nu^{4} + 19\nu^{3} - 22\nu^{2} + 30\nu - 9 ) / 3 Copy content Toggle raw display
ν\nu== (2β5β4β32β2+β1+2)/3 ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + \beta _1 + 2 ) / 3 Copy content Toggle raw display
ν2\nu^{2}== (2β5β4β32β2+4β14)/3 ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + 4\beta _1 - 4 ) / 3 Copy content Toggle raw display
ν3\nu^{3}== (7β5+5β4+2β3+4β2+β110)/3 ( 7\beta_{5} + 5\beta_{4} + 2\beta_{3} + 4\beta_{2} + \beta _1 - 10 ) / 3 Copy content Toggle raw display
ν4\nu^{4}== (16β5+11β4+8β3+10β217β1+5)/3 ( 16\beta_{5} + 11\beta_{4} + 8\beta_{3} + 10\beta_{2} - 17\beta _1 + 5 ) / 3 Copy content Toggle raw display
ν5\nu^{5}== (14β516β4+5β35β223β1+47)/3 ( -14\beta_{5} - 16\beta_{4} + 5\beta_{3} - 5\beta_{2} - 23\beta _1 + 47 ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 1+β4-1 + \beta_{4} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
442.1
0.500000 2.05195i
0.500000 + 1.41036i
0.500000 0.224437i
0.500000 + 2.05195i
0.500000 1.41036i
0.500000 + 0.224437i
−1.23025 2.13086i 0 −2.02704 + 3.51094i 1.29679 2.24611i 0 0 5.05408 0 −6.38151
442.2 −0.119562 0.207087i 0 0.971410 1.68253i −0.590972 + 1.02359i 0 0 −0.942820 0 0.282630
442.3 0.849814 + 1.47192i 0 −0.444368 + 0.769668i 1.79418 3.10761i 0 0 1.88874 0 6.09888
883.1 −1.23025 + 2.13086i 0 −2.02704 3.51094i 1.29679 + 2.24611i 0 0 5.05408 0 −6.38151
883.2 −0.119562 + 0.207087i 0 0.971410 + 1.68253i −0.590972 1.02359i 0 0 −0.942820 0 0.282630
883.3 0.849814 1.47192i 0 −0.444368 0.769668i 1.79418 + 3.10761i 0 0 1.88874 0 6.09888
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 442.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.f.c 6
3.b odd 2 1 441.2.f.d 6
7.b odd 2 1 189.2.f.a 6
7.c even 3 1 1323.2.g.b 6
7.c even 3 1 1323.2.h.e 6
7.d odd 6 1 1323.2.g.c 6
7.d odd 6 1 1323.2.h.d 6
9.c even 3 1 inner 1323.2.f.c 6
9.c even 3 1 3969.2.a.p 3
9.d odd 6 1 441.2.f.d 6
9.d odd 6 1 3969.2.a.m 3
21.c even 2 1 63.2.f.b 6
21.g even 6 1 441.2.g.e 6
21.g even 6 1 441.2.h.c 6
21.h odd 6 1 441.2.g.d 6
21.h odd 6 1 441.2.h.b 6
28.d even 2 1 3024.2.r.g 6
63.g even 3 1 1323.2.h.e 6
63.h even 3 1 1323.2.g.b 6
63.i even 6 1 441.2.g.e 6
63.j odd 6 1 441.2.g.d 6
63.k odd 6 1 1323.2.h.d 6
63.l odd 6 1 189.2.f.a 6
63.l odd 6 1 567.2.a.g 3
63.n odd 6 1 441.2.h.b 6
63.o even 6 1 63.2.f.b 6
63.o even 6 1 567.2.a.d 3
63.s even 6 1 441.2.h.c 6
63.t odd 6 1 1323.2.g.c 6
84.h odd 2 1 1008.2.r.k 6
252.s odd 6 1 1008.2.r.k 6
252.s odd 6 1 9072.2.a.bq 3
252.bi even 6 1 3024.2.r.g 6
252.bi even 6 1 9072.2.a.cd 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.b 6 21.c even 2 1
63.2.f.b 6 63.o even 6 1
189.2.f.a 6 7.b odd 2 1
189.2.f.a 6 63.l odd 6 1
441.2.f.d 6 3.b odd 2 1
441.2.f.d 6 9.d odd 6 1
441.2.g.d 6 21.h odd 6 1
441.2.g.d 6 63.j odd 6 1
441.2.g.e 6 21.g even 6 1
441.2.g.e 6 63.i even 6 1
441.2.h.b 6 21.h odd 6 1
441.2.h.b 6 63.n odd 6 1
441.2.h.c 6 21.g even 6 1
441.2.h.c 6 63.s even 6 1
567.2.a.d 3 63.o even 6 1
567.2.a.g 3 63.l odd 6 1
1008.2.r.k 6 84.h odd 2 1
1008.2.r.k 6 252.s odd 6 1
1323.2.f.c 6 1.a even 1 1 trivial
1323.2.f.c 6 9.c even 3 1 inner
1323.2.g.b 6 7.c even 3 1
1323.2.g.b 6 63.h even 3 1
1323.2.g.c 6 7.d odd 6 1
1323.2.g.c 6 63.t odd 6 1
1323.2.h.d 6 7.d odd 6 1
1323.2.h.d 6 63.k odd 6 1
1323.2.h.e 6 7.c even 3 1
1323.2.h.e 6 63.g even 3 1
3024.2.r.g 6 28.d even 2 1
3024.2.r.g 6 252.bi even 6 1
3969.2.a.m 3 9.d odd 6 1
3969.2.a.p 3 9.c even 3 1
9072.2.a.bq 3 252.s odd 6 1
9072.2.a.cd 3 252.bi even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]):

T26+T25+5T242T23+17T22+4T2+1 T_{2}^{6} + T_{2}^{5} + 5T_{2}^{4} - 2T_{2}^{3} + 17T_{2}^{2} + 4T_{2} + 1 Copy content Toggle raw display
T565T55+23T5432T53+59T52+22T5+121 T_{5}^{6} - 5T_{5}^{5} + 23T_{5}^{4} - 32T_{5}^{3} + 59T_{5}^{2} + 22T_{5} + 121 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6+T5+5T4++1 T^{6} + T^{5} + 5 T^{4} + \cdots + 1 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T65T5++121 T^{6} - 5 T^{5} + \cdots + 121 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T6+2T5++2209 T^{6} + 2 T^{5} + \cdots + 2209 Copy content Toggle raw display
1313 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
1717 (T3+12T2++27)2 (T^{3} + 12 T^{2} + \cdots + 27)^{2} Copy content Toggle raw display
1919 (T33T26T+7)2 (T^{3} - 3 T^{2} - 6 T + 7)^{2} Copy content Toggle raw display
2323 T6+33T4++81 T^{6} + 33 T^{4} + \cdots + 81 Copy content Toggle raw display
2929 T6T5+5T4++1 T^{6} - T^{5} + 5 T^{4} + \cdots + 1 Copy content Toggle raw display
3131 T6+3T5++729 T^{6} + 3 T^{5} + \cdots + 729 Copy content Toggle raw display
3737 (T3+3T254T+81)2 (T^{3} + 3 T^{2} - 54 T + 81)^{2} Copy content Toggle raw display
4141 T622T5++124609 T^{6} - 22 T^{5} + \cdots + 124609 Copy content Toggle raw display
4343 T63T5++14641 T^{6} - 3 T^{5} + \cdots + 14641 Copy content Toggle raw display
4747 T69T5++35721 T^{6} - 9 T^{5} + \cdots + 35721 Copy content Toggle raw display
5353 (T318T2+75T9)2 (T^{3} - 18 T^{2} + 75 T - 9)^{2} Copy content Toggle raw display
5959 T69T5++3969 T^{6} - 9 T^{5} + \cdots + 3969 Copy content Toggle raw display
6161 T6+6T5++4489 T^{6} + 6 T^{5} + \cdots + 4489 Copy content Toggle raw display
6767 T6+207T4++466489 T^{6} + 207 T^{4} + \cdots + 466489 Copy content Toggle raw display
7171 (T3+9T26T81)2 (T^{3} + 9 T^{2} - 6 T - 81)^{2} Copy content Toggle raw display
7373 (T3+3T2++243)2 (T^{3} + 3 T^{2} + \cdots + 243)^{2} Copy content Toggle raw display
7979 T6+15T5++591361 T^{6} + 15 T^{5} + \cdots + 591361 Copy content Toggle raw display
8383 T612T5++729 T^{6} - 12 T^{5} + \cdots + 729 Copy content Toggle raw display
8989 (T3+2T2++379)2 (T^{3} + 2 T^{2} + \cdots + 379)^{2} Copy content Toggle raw display
9797 T63T5++363609 T^{6} - 3 T^{5} + \cdots + 363609 Copy content Toggle raw display
show more
show less