L(s) = 1 | − 6·2-s + 15·4-s + 3·5-s − 18·8-s − 18·10-s + 6·11-s + 3·13-s + 3·16-s + 6·17-s + 3·19-s + 45·20-s − 36·22-s + 12·23-s + 15·25-s − 18·26-s + 9·29-s − 6·31-s + 30·32-s − 36·34-s + 3·37-s − 18·38-s − 54·40-s + 3·43-s + 90·44-s − 72·46-s − 6·47-s − 90·50-s + ⋯ |
L(s) = 1 | − 4.24·2-s + 15/2·4-s + 1.34·5-s − 6.36·8-s − 5.69·10-s + 1.80·11-s + 0.832·13-s + 3/4·16-s + 1.45·17-s + 0.688·19-s + 10.0·20-s − 7.67·22-s + 2.50·23-s + 3·25-s − 3.53·26-s + 1.67·29-s − 1.07·31-s + 5.30·32-s − 6.17·34-s + 0.493·37-s − 2.91·38-s − 8.53·40-s + 0.457·43-s + 13.5·44-s − 10.6·46-s − 0.875·47-s − 12.7·50-s + ⋯ |
Λ(s)=(=((318⋅712)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((318⋅712)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.6859937569 |
L(21) |
≈ |
0.6859937569 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | (1+3T+3pT2+9T3+3p2T4+3p2T5+p3T6)2 |
| 5 | 1−3T−6T2+9T3+69T4−6pT5−371T6−6p2T7+69p2T8+9p3T9−6p4T10−3p5T11+p6T12 |
| 11 | 1−6T−6T2+18T3+492T4−852T5−2873T6−852pT7+492p2T8+18p3T9−6p4T10−6p5T11+p6T12 |
| 13 | 1−3T+3T2−76T3+45T4+135T5+3246T6+135pT7+45p2T8−76p3T9+3p4T10−3p5T11+p6T12 |
| 17 | 1−6T−24T2+54T3+1338T4−1914T5−18929T6−1914pT7+1338p2T8+54p3T9−24p4T10−6p5T11+p6T12 |
| 19 | 1−3T−42T2+41T3+1341T4−216T5−29541T6−216pT7+1341p2T8+41p3T9−42p4T10−3p5T11+p6T12 |
| 23 | 1−12T+48T2−54T3+420T4−6060T5+37591T6−6060pT7+420p2T8−54p3T9+48p4T10−12p5T11+p6T12 |
| 29 | 1−9T+30T2−81T3−579T4+9414T5−59051T6+9414pT7−579p2T8−81p3T9+30p4T10−9p5T11+p6T12 |
| 31 | (1+3T+15T2−137T3+15pT4+3p2T5+p3T6)2 |
| 37 | 1−3T−24T2−301T3+171T4+6552T5+58893T6+6552pT7+171p2T8−301p3T9−24p4T10−3p5T11+p6T12 |
| 41 | 1−114T2+18T3+8322T4−1026T5−394913T6−1026pT7+8322p2T8+18p3T9−114p4T10+p6T12 |
| 43 | 1−3T−114T2+149T3+9063T4−5670T5−441093T6−5670pT7+9063p2T8+149p3T9−114p4T10−3p5T11+p6T12 |
| 47 | (1+3T+87T2+333T3+87pT4+3p2T5+p3T6)2 |
| 53 | 1−6T−114T2+378T3+10716T4−17304T5−587549T6−17304pT7+10716p2T8+378p3T9−114p4T10−6p5T11+p6T12 |
| 59 | (1−3T+105T2−405T3+105pT4−3p2T5+p3T6)2 |
| 61 | (1−6T+168T2−713T3+168pT4−6p2T5+p3T6)2 |
| 67 | (1+12T+222T2+1591T3+222pT4+12p2T5+p3T6)2 |
| 71 | (1+9T+159T2+1305T3+159pT4+9p2T5+p3T6)2 |
| 73 | 1−21T+138T2−769T3+10953T4−30402T5−450903T6−30402pT7+10953p2T8−769p3T9+138p4T10−21p5T11+p6T12 |
| 79 | (1+21T+357T2+3499T3+357pT4+21p2T5+p3T6)2 |
| 83 | 1+18T+30T2−702T3+8088T4+126648T5+719359T6+126648pT7+8088p2T8−702p3T9+30p4T10+18p5T11+p6T12 |
| 89 | 1−12T−60T2+198T3+7584T4+70800T5−1684181T6+70800pT7+7584p2T8+198p3T9−60p4T10−12p5T11+p6T12 |
| 97 | 1−3T−114T2+149T3+2421T4+11502T5+340233T6+11502pT7+2421p2T8+149p3T9−114p4T10−3p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.15647210108345494806655841704, −4.86380285581696211941548942749, −4.79542064840869391124347659342, −4.67000187049022545446688180544, −4.53272063276787728897164247088, −4.37733122918936761059266255226, −3.93292738038095162567008306760, −3.84639525545306640528622805239, −3.75782377640479351629457596012, −3.54060668688092052242506071789, −3.37981372863964212290991161340, −2.95406513760523355890324987096, −2.89097028496577492197810740024, −2.88553098963996835285390837704, −2.53019707865550335147930614360, −2.49642580341731286473168079976, −2.21192925779734216232361606587, −1.50691906677424877124384919067, −1.49376423775150891738678551928, −1.47004014590917633133735004636, −1.30529625134466964710113738245, −1.03744470626005648041139332905, −0.974039639536031322478803260247, −0.48897064206948034199398703299, −0.43651933964689686108467198923,
0.43651933964689686108467198923, 0.48897064206948034199398703299, 0.974039639536031322478803260247, 1.03744470626005648041139332905, 1.30529625134466964710113738245, 1.47004014590917633133735004636, 1.49376423775150891738678551928, 1.50691906677424877124384919067, 2.21192925779734216232361606587, 2.49642580341731286473168079976, 2.53019707865550335147930614360, 2.88553098963996835285390837704, 2.89097028496577492197810740024, 2.95406513760523355890324987096, 3.37981372863964212290991161340, 3.54060668688092052242506071789, 3.75782377640479351629457596012, 3.84639525545306640528622805239, 3.93292738038095162567008306760, 4.37733122918936761059266255226, 4.53272063276787728897164247088, 4.67000187049022545446688180544, 4.79542064840869391124347659342, 4.86380285581696211941548942749, 5.15647210108345494806655841704
Plot not available for L-functions of degree greater than 10.