Properties

Label 1323.2.h.c
Level 13231323
Weight 22
Character orbit 1323.h
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(226,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.h (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ18)\Q(\zeta_{18})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x6x3+1 x^{6} - x^{3} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+β31)q2+(2β4β3+1)q4+(β5+β4++β1)q5+(2β4β32)q8+(β5β4++2β2)q10++(7β5+7β4++β1)q97+O(q100) q + (\beta_{4} + \beta_{3} - 1) q^{2} + ( - 2 \beta_{4} - \beta_{3} + 1) q^{4} + ( - \beta_{5} + \beta_{4} + \cdots + \beta_1) q^{5} + (2 \beta_{4} - \beta_{3} - 2) q^{8} + (\beta_{5} - \beta_{4} + \cdots + 2 \beta_{2}) q^{10}+ \cdots + ( - 7 \beta_{5} + 7 \beta_{4} + \cdots + \beta_1) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q6q2+6q4+3q512q8+6q11+3q13+6q16+6q17+3q196q209q22+12q23+6q253q26+9q296q319q34+3q37+6q38++3q97+O(q100) 6 q - 6 q^{2} + 6 q^{4} + 3 q^{5} - 12 q^{8} + 6 q^{11} + 3 q^{13} + 6 q^{16} + 6 q^{17} + 3 q^{19} - 6 q^{20} - 9 q^{22} + 12 q^{23} + 6 q^{25} - 3 q^{26} + 9 q^{29} - 6 q^{31} - 9 q^{34} + 3 q^{37} + 6 q^{38}+ \cdots + 3 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ183 \zeta_{18}^{3} Copy content Toggle raw display
β2\beta_{2}== ζ185+ζ18 \zeta_{18}^{5} + \zeta_{18} Copy content Toggle raw display
β3\beta_{3}== ζ184+ζ182+ζ18 -\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18} Copy content Toggle raw display
β4\beta_{4}== ζ185+ζ184 -\zeta_{18}^{5} + \zeta_{18}^{4} Copy content Toggle raw display
β5\beta_{5}== ζ185ζ184+ζ18 -\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18} Copy content Toggle raw display
ζ18\zeta_{18}== (β5+β4+2β2)/3 ( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3 Copy content Toggle raw display
ζ182\zeta_{18}^{2}== (2β5+β4+3β3β2)/3 ( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3 Copy content Toggle raw display
ζ183\zeta_{18}^{3}== β1 \beta_1 Copy content Toggle raw display
ζ184\zeta_{18}^{4}== (β5+2β4+β2)/3 ( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ185\zeta_{18}^{5}== (β5β4+β2)/3 ( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 1+β1-1 + \beta_{1} 1+β1-1 + \beta_{1}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
226.1
−0.766044 + 0.642788i
−0.173648 0.984808i
0.939693 + 0.342020i
−0.766044 0.642788i
−0.173648 + 0.984808i
0.939693 0.342020i
−2.53209 0 4.41147 −0.439693 0.761570i 0 0 −6.10607 0 1.11334 + 1.92836i
226.2 −1.34730 0 −0.184793 1.26604 + 2.19285i 0 0 2.94356 0 −1.70574 2.95442i
226.3 0.879385 0 −1.22668 0.673648 + 1.16679i 0 0 −2.83750 0 0.592396 + 1.02606i
802.1 −2.53209 0 4.41147 −0.439693 + 0.761570i 0 0 −6.10607 0 1.11334 1.92836i
802.2 −1.34730 0 −0.184793 1.26604 2.19285i 0 0 2.94356 0 −1.70574 + 2.95442i
802.3 0.879385 0 −1.22668 0.673648 1.16679i 0 0 −2.83750 0 0.592396 1.02606i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 226.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.h.c 6
3.b odd 2 1 441.2.h.d 6
7.b odd 2 1 1323.2.h.b 6
7.c even 3 1 189.2.f.b 6
7.c even 3 1 1323.2.g.d 6
7.d odd 6 1 1323.2.f.d 6
7.d odd 6 1 1323.2.g.e 6
9.c even 3 1 1323.2.g.d 6
9.d odd 6 1 441.2.g.c 6
21.c even 2 1 441.2.h.e 6
21.g even 6 1 441.2.f.c 6
21.g even 6 1 441.2.g.b 6
21.h odd 6 1 63.2.f.a 6
21.h odd 6 1 441.2.g.c 6
28.g odd 6 1 3024.2.r.k 6
63.g even 3 1 189.2.f.b 6
63.h even 3 1 567.2.a.c 3
63.h even 3 1 inner 1323.2.h.c 6
63.i even 6 1 441.2.h.e 6
63.i even 6 1 3969.2.a.q 3
63.j odd 6 1 441.2.h.d 6
63.j odd 6 1 567.2.a.h 3
63.k odd 6 1 1323.2.f.d 6
63.l odd 6 1 1323.2.g.e 6
63.n odd 6 1 63.2.f.a 6
63.o even 6 1 441.2.g.b 6
63.s even 6 1 441.2.f.c 6
63.t odd 6 1 1323.2.h.b 6
63.t odd 6 1 3969.2.a.l 3
84.n even 6 1 1008.2.r.h 6
252.o even 6 1 1008.2.r.h 6
252.u odd 6 1 9072.2.a.bs 3
252.bb even 6 1 9072.2.a.ca 3
252.bl odd 6 1 3024.2.r.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.a 6 21.h odd 6 1
63.2.f.a 6 63.n odd 6 1
189.2.f.b 6 7.c even 3 1
189.2.f.b 6 63.g even 3 1
441.2.f.c 6 21.g even 6 1
441.2.f.c 6 63.s even 6 1
441.2.g.b 6 21.g even 6 1
441.2.g.b 6 63.o even 6 1
441.2.g.c 6 9.d odd 6 1
441.2.g.c 6 21.h odd 6 1
441.2.h.d 6 3.b odd 2 1
441.2.h.d 6 63.j odd 6 1
441.2.h.e 6 21.c even 2 1
441.2.h.e 6 63.i even 6 1
567.2.a.c 3 63.h even 3 1
567.2.a.h 3 63.j odd 6 1
1008.2.r.h 6 84.n even 6 1
1008.2.r.h 6 252.o even 6 1
1323.2.f.d 6 7.d odd 6 1
1323.2.f.d 6 63.k odd 6 1
1323.2.g.d 6 7.c even 3 1
1323.2.g.d 6 9.c even 3 1
1323.2.g.e 6 7.d odd 6 1
1323.2.g.e 6 63.l odd 6 1
1323.2.h.b 6 7.b odd 2 1
1323.2.h.b 6 63.t odd 6 1
1323.2.h.c 6 1.a even 1 1 trivial
1323.2.h.c 6 63.h even 3 1 inner
3024.2.r.k 6 28.g odd 6 1
3024.2.r.k 6 252.bl odd 6 1
3969.2.a.l 3 63.t odd 6 1
3969.2.a.q 3 63.i even 6 1
9072.2.a.bs 3 252.u odd 6 1
9072.2.a.ca 3 252.bb even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]):

T23+3T223 T_{2}^{3} + 3T_{2}^{2} - 3 Copy content Toggle raw display
T563T55+9T546T53+9T52+9 T_{5}^{6} - 3T_{5}^{5} + 9T_{5}^{4} - 6T_{5}^{3} + 9T_{5}^{2} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T3+3T23)2 (T^{3} + 3 T^{2} - 3)^{2} Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 T63T5++9 T^{6} - 3 T^{5} + \cdots + 9 Copy content Toggle raw display
77 T6 T^{6} Copy content Toggle raw display
1111 T66T5++9 T^{6} - 6 T^{5} + \cdots + 9 Copy content Toggle raw display
1313 T63T5++11449 T^{6} - 3 T^{5} + \cdots + 11449 Copy content Toggle raw display
1717 T66T5++9 T^{6} - 6 T^{5} + \cdots + 9 Copy content Toggle raw display
1919 T63T5++289 T^{6} - 3 T^{5} + \cdots + 289 Copy content Toggle raw display
2323 T612T5++9 T^{6} - 12 T^{5} + \cdots + 9 Copy content Toggle raw display
2929 T69T5++110889 T^{6} - 9 T^{5} + \cdots + 110889 Copy content Toggle raw display
3131 (T3+3T2+323)2 (T^{3} + 3 T^{2} + \cdots - 323)^{2} Copy content Toggle raw display
3737 T63T5++104329 T^{6} - 3 T^{5} + \cdots + 104329 Copy content Toggle raw display
4141 T6+9T4++81 T^{6} + 9 T^{4} + \cdots + 81 Copy content Toggle raw display
4343 T63T5++1 T^{6} - 3 T^{5} + \cdots + 1 Copy content Toggle raw display
4747 (T3+3T254T+51)2 (T^{3} + 3 T^{2} - 54 T + 51)^{2} Copy content Toggle raw display
5353 T66T5++9 T^{6} - 6 T^{5} + \cdots + 9 Copy content Toggle raw display
5959 (T33T272T51)2 (T^{3} - 3 T^{2} - 72 T - 51)^{2} Copy content Toggle raw display
6161 (T36T215T+19)2 (T^{3} - 6 T^{2} - 15 T + 19)^{2} Copy content Toggle raw display
6767 (T3+12T2+17)2 (T^{3} + 12 T^{2} + \cdots - 17)^{2} Copy content Toggle raw display
7171 (T3+9T254T+27)2 (T^{3} + 9 T^{2} - 54 T + 27)^{2} Copy content Toggle raw display
7373 T621T5++72361 T^{6} - 21 T^{5} + \cdots + 72361 Copy content Toggle raw display
7979 (T3+21T2++181)2 (T^{3} + 21 T^{2} + \cdots + 181)^{2} Copy content Toggle raw display
8383 T6+18T5++81 T^{6} + 18 T^{5} + \cdots + 81 Copy content Toggle raw display
8989 T612T5++660969 T^{6} - 12 T^{5} + \cdots + 660969 Copy content Toggle raw display
9797 T63T5++104329 T^{6} - 3 T^{5} + \cdots + 104329 Copy content Toggle raw display
show more
show less