L(s) = 1 | + 0.879·2-s − 1.22·4-s + (0.673 − 1.16i)5-s − 2.83·8-s + (0.592 − 1.02i)10-s + (0.826 + 1.43i)11-s + (1.68 + 2.91i)13-s − 0.0418·16-s + (0.233 − 0.405i)17-s + (1.61 + 2.79i)19-s + (−0.826 + 1.43i)20-s + (0.726 + 1.25i)22-s + (4.47 − 7.74i)23-s + (1.59 + 2.75i)25-s + (1.48 + 2.56i)26-s + ⋯ |
L(s) = 1 | + 0.621·2-s − 0.613·4-s + (0.301 − 0.521i)5-s − 1.00·8-s + (0.187 − 0.324i)10-s + (0.249 + 0.431i)11-s + (0.467 + 0.809i)13-s − 0.0104·16-s + (0.0567 − 0.0982i)17-s + (0.370 + 0.641i)19-s + (−0.184 + 0.320i)20-s + (0.154 + 0.268i)22-s + (0.932 − 1.61i)23-s + (0.318 + 0.551i)25-s + (0.290 + 0.503i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.975 + 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.975 + 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.029574706\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.029574706\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 0.879T + 2T^{2} \) |
| 5 | \( 1 + (-0.673 + 1.16i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.826 - 1.43i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.68 - 2.91i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.233 + 0.405i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.61 - 2.79i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.47 + 7.74i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.13 + 5.42i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 9.23T + 31T^{2} \) |
| 37 | \( 1 + (4.61 + 7.99i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.70 - 2.95i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.20 + 3.82i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 9.35T + 47T^{2} \) |
| 53 | \( 1 + (0.286 - 0.497i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 10.3T + 59T^{2} \) |
| 61 | \( 1 - 7.63T + 61T^{2} \) |
| 67 | \( 1 - 0.596T + 67T^{2} \) |
| 71 | \( 1 - 0.554T + 71T^{2} \) |
| 73 | \( 1 + (1.02 - 1.77i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 2.40T + 79T^{2} \) |
| 83 | \( 1 + (7.52 - 13.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.54 - 7.86i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.949 + 1.64i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.552542562088576796130744768628, −8.781953651579833933758631414120, −8.248369554365298655138041841391, −6.90801745634069651221251159207, −6.18223084513904871590622588065, −5.20399056228487352996145724472, −4.53272063276787728897164247088, −3.75782377640479351629457596012, −2.49642580341731286473168079976, −0.974039639536031322478803260247,
1.03744470626005648041139332905, 2.95406513760523355890324987096, 3.37981372863964212290991161340, 4.67000187049022545446688180544, 5.37160932839038192665285468334, 6.22694358266150115256101023063, 6.99447707426703190656588965029, 8.213179536753930382631998893451, 8.782734489746828852664306773207, 9.735736950274807242377486425071