L(s) = 1 | + 0.879·2-s − 1.22·4-s + (0.673 − 1.16i)5-s − 2.83·8-s + (0.592 − 1.02i)10-s + (0.826 + 1.43i)11-s + (1.68 + 2.91i)13-s − 0.0418·16-s + (0.233 − 0.405i)17-s + (1.61 + 2.79i)19-s + (−0.826 + 1.43i)20-s + (0.726 + 1.25i)22-s + (4.47 − 7.74i)23-s + (1.59 + 2.75i)25-s + (1.48 + 2.56i)26-s + ⋯ |
L(s) = 1 | + 0.621·2-s − 0.613·4-s + (0.301 − 0.521i)5-s − 1.00·8-s + (0.187 − 0.324i)10-s + (0.249 + 0.431i)11-s + (0.467 + 0.809i)13-s − 0.0104·16-s + (0.0567 − 0.0982i)17-s + (0.370 + 0.641i)19-s + (−0.184 + 0.320i)20-s + (0.154 + 0.268i)22-s + (0.932 − 1.61i)23-s + (0.318 + 0.551i)25-s + (0.290 + 0.503i)26-s + ⋯ |
Λ(s)=(=(1323s/2ΓC(s)L(s)(0.975+0.220i)Λ(2−s)
Λ(s)=(=(1323s/2ΓC(s+1/2)L(s)(0.975+0.220i)Λ(1−s)
Degree: |
2 |
Conductor: |
1323
= 33⋅72
|
Sign: |
0.975+0.220i
|
Analytic conductor: |
10.5642 |
Root analytic conductor: |
3.25026 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1323(802,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1323, ( :1/2), 0.975+0.220i)
|
Particular Values
L(1) |
≈ |
2.029574706 |
L(21) |
≈ |
2.029574706 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1−0.879T+2T2 |
| 5 | 1+(−0.673+1.16i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.826−1.43i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−1.68−2.91i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.233+0.405i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1.61−2.79i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−4.47+7.74i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3.13+5.42i)T+(−14.5−25.1i)T2 |
| 31 | 1−9.23T+31T2 |
| 37 | 1+(4.61+7.99i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.70−2.95i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−2.20+3.82i)T+(−21.5−37.2i)T2 |
| 47 | 1+9.35T+47T2 |
| 53 | 1+(0.286−0.497i)T+(−26.5−45.8i)T2 |
| 59 | 1−10.3T+59T2 |
| 61 | 1−7.63T+61T2 |
| 67 | 1−0.596T+67T2 |
| 71 | 1−0.554T+71T2 |
| 73 | 1+(1.02−1.77i)T+(−36.5−63.2i)T2 |
| 79 | 1+2.40T+79T2 |
| 83 | 1+(7.52−13.0i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−4.54−7.86i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.949+1.64i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.552542562088576796130744768628, −8.781953651579833933758631414120, −8.248369554365298655138041841391, −6.90801745634069651221251159207, −6.18223084513904871590622588065, −5.20399056228487352996145724472, −4.53272063276787728897164247088, −3.75782377640479351629457596012, −2.49642580341731286473168079976, −0.974039639536031322478803260247,
1.03744470626005648041139332905, 2.95406513760523355890324987096, 3.37981372863964212290991161340, 4.67000187049022545446688180544, 5.37160932839038192665285468334, 6.22694358266150115256101023063, 6.99447707426703190656588965029, 8.213179536753930382631998893451, 8.782734489746828852664306773207, 9.735736950274807242377486425071