L(s) = 1 | − 0.670·2-s − 1.55·4-s + (−0.712 − 1.23i)5-s + 2.38·8-s + (0.477 + 0.827i)10-s + (−2.46 + 4.27i)11-s + (1.37 − 2.38i)13-s + 1.50·16-s + (0.559 + 0.969i)17-s + (2.00 − 3.47i)19-s + (1.10 + 1.91i)20-s + (1.65 − 2.86i)22-s + (2.71 + 4.70i)23-s + (1.48 − 2.57i)25-s + (−0.923 + 1.59i)26-s + ⋯ |
L(s) = 1 | − 0.473·2-s − 0.775·4-s + (−0.318 − 0.551i)5-s + 0.841·8-s + (0.151 + 0.261i)10-s + (−0.743 + 1.28i)11-s + (0.381 − 0.661i)13-s + 0.376·16-s + (0.135 + 0.235i)17-s + (0.460 − 0.797i)19-s + (0.247 + 0.427i)20-s + (0.352 − 0.610i)22-s + (0.566 + 0.981i)23-s + (0.296 − 0.514i)25-s + (−0.181 + 0.313i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.703 + 0.711i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.703 + 0.711i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.4260149444\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4260149444\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 0.670T + 2T^{2} \) |
| 5 | \( 1 + (0.712 + 1.23i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.46 - 4.27i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.37 + 2.38i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.559 - 0.969i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.00 + 3.47i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.71 - 4.70i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.40 + 5.89i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.50T + 31T^{2} \) |
| 37 | \( 1 + (-0.709 + 1.22i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.124 + 0.215i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.498 + 0.863i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 9.47T + 47T^{2} \) |
| 53 | \( 1 + (-0.410 - 0.710i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 6.58T + 59T^{2} \) |
| 61 | \( 1 + 0.0752T + 61T^{2} \) |
| 67 | \( 1 + 12.5T + 67T^{2} \) |
| 71 | \( 1 + 0.0804T + 71T^{2} \) |
| 73 | \( 1 + (5.34 + 9.25i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 1.84T + 79T^{2} \) |
| 83 | \( 1 + (7.23 + 12.5i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.76 + 11.7i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.70 + 4.67i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.326933627045154904360722795316, −8.578298131436463693575028774695, −7.73371884616265091431299103727, −7.31079288103065972813610652947, −5.82584337572000479141232726822, −4.93565499795251242310140856933, −4.37912342705926221382120839713, −3.16409609697117601197940798274, −1.63187891132152316254784359013, −0.23956791994584263408497247871,
1.28641097730475574372882863875, 3.01139614429900924605184310798, 3.75673115570171331355476293732, 4.91578174256287537748040823768, 5.71866625690005212665657410139, 6.81096157573518790129136001415, 7.68209673046353272611347637171, 8.405358313918884171910345858901, 9.026597991910496189643622770024, 9.855026110699888530405367452531