Properties

Label 1323.2.h.f
Level 13231323
Weight 22
Character orbit 1323.h
Analytic conductor 10.56410.564
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,2,Mod(226,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1323=3372 1323 = 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1323.h (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.564208187410.5642081874
Analytic rank: 00
Dimension: 1010
Relative dimension: 55 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x9+9x88x7+40x636x5+90x43x3+36x29x+9 x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 32 3^{2}
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β5+β1)q2+(β3+1)q4+(β9β6)q5+(β8β4+1)q8+(β9β82β6)q10+(β7β6+β41)q11++(2β9+β8++4β3)q97+O(q100) q + ( - \beta_{5} + \beta_1) q^{2} + (\beta_{3} + 1) q^{4} + (\beta_{9} - \beta_{6}) q^{5} + ( - \beta_{8} - \beta_{4} + 1) q^{8} + (\beta_{9} - \beta_{8} - 2 \beta_{6}) q^{10} + (\beta_{7} - \beta_{6} + \beta_{4} - 1) q^{11}+ \cdots + ( - 2 \beta_{9} + \beta_{8} + \cdots + 4 \beta_{3}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+4q2+8q4+4q5+6q8+7q104q11+8q134q16+12q17q19+5q20q223q23q25+11q267q296q314q323q34++12q97+O(q100) 10 q + 4 q^{2} + 8 q^{4} + 4 q^{5} + 6 q^{8} + 7 q^{10} - 4 q^{11} + 8 q^{13} - 4 q^{16} + 12 q^{17} - q^{19} + 5 q^{20} - q^{22} - 3 q^{23} - q^{25} + 11 q^{26} - 7 q^{29} - 6 q^{31} - 4 q^{32} - 3 q^{34}+ \cdots + 12 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x102x9+9x88x7+40x636x5+90x43x3+36x29x+9 x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν99ν83ν761ν672ν5282ν4204ν3387ν2873ν117)/189 ( -\nu^{9} - 9\nu^{8} - 3\nu^{7} - 61\nu^{6} - 72\nu^{5} - 282\nu^{4} - 204\nu^{3} - 387\nu^{2} - 873\nu - 117 ) / 189 Copy content Toggle raw display
β3\beta_{3}== (7ν912ν8+48ν723ν6+204ν5240ν4+303ν3108ν2+36ν1557)/567 ( 7\nu^{9} - 12\nu^{8} + 48\nu^{7} - 23\nu^{6} + 204\nu^{5} - 240\nu^{4} + 303\nu^{3} - 108\nu^{2} + 36\nu - 1557 ) / 567 Copy content Toggle raw display
β4\beta_{4}== (2ν9ν8+12ν7+8ν6+68ν5+30ν4+123ν3+204ν2+270ν+63)/63 ( 2\nu^{9} - \nu^{8} + 12\nu^{7} + 8\nu^{6} + 68\nu^{5} + 30\nu^{4} + 123\nu^{3} + 204\nu^{2} + 270\nu + 63 ) / 63 Copy content Toggle raw display
β5\beta_{5}== (16ν939ν8+156ν7176ν6+663ν5780ν4+1680ν3+180)/567 ( 16 \nu^{9} - 39 \nu^{8} + 156 \nu^{7} - 176 \nu^{6} + 663 \nu^{5} - 780 \nu^{4} + 1680 \nu^{3} + \cdots - 180 ) / 567 Copy content Toggle raw display
β6\beta_{6}== (20ν924ν8+141ν74ν6+624ν557ν4+1020ν3+63)/567 ( 20 \nu^{9} - 24 \nu^{8} + 141 \nu^{7} - 4 \nu^{6} + 624 \nu^{5} - 57 \nu^{4} + 1020 \nu^{3} + \cdots - 63 ) / 567 Copy content Toggle raw display
β7\beta_{7}== (53ν9+60ν8375ν711ν61668ν569ν42757ν3+1368)/567 ( - 53 \nu^{9} + 60 \nu^{8} - 375 \nu^{7} - 11 \nu^{6} - 1668 \nu^{5} - 69 \nu^{4} - 2757 \nu^{3} + \cdots - 1368 ) / 567 Copy content Toggle raw display
β8\beta_{8}== (82ν9+165ν8732ν7+632ν63264ν5+2850ν47260ν3++720)/567 ( - 82 \nu^{9} + 165 \nu^{8} - 732 \nu^{7} + 632 \nu^{6} - 3264 \nu^{5} + 2850 \nu^{4} - 7260 \nu^{3} + \cdots + 720 ) / 567 Copy content Toggle raw display
β9\beta_{9}== (91ν9+174ν8813ν7+704ν63633ν5+3174ν48070ν3++801)/567 ( - 91 \nu^{9} + 174 \nu^{8} - 813 \nu^{7} + 704 \nu^{6} - 3633 \nu^{5} + 3174 \nu^{4} - 8070 \nu^{3} + \cdots + 801 ) / 567 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β7+3β6β3 \beta_{7} + 3\beta_{6} - \beta_{3} Copy content Toggle raw display
ν3\nu^{3}== β8+4β5+β44β11 \beta_{8} + 4\beta_{5} + \beta_{4} - 4\beta _1 - 1 Copy content Toggle raw display
ν4\nu^{4}== 5β714β6+β4+β214 -5\beta_{7} - 14\beta_{6} + \beta_{4} + \beta_{2} - 14 Copy content Toggle raw display
ν5\nu^{5}== 2β97β8β79β617β5+β3 2\beta_{9} - 7\beta_{8} - \beta_{7} - 9\beta_{6} - 17\beta_{5} + \beta_{3} Copy content Toggle raw display
ν6\nu^{6}== 9β910β8β510β4+24β39β2+β1+70 9\beta_{9} - 10\beta_{8} - \beta_{5} - 10\beta_{4} + 24\beta_{3} - 9\beta_{2} + \beta _1 + 70 Copy content Toggle raw display
ν7\nu^{7}== 11β7+65β643β419β2+75β1+65 11\beta_{7} + 65\beta_{6} - 43\beta_{4} - 19\beta_{2} + 75\beta _1 + 65 Copy content Toggle raw display
ν8\nu^{8}== 62β9+73β8+118β7+360β6+14β5118β3 -62\beta_{9} + 73\beta_{8} + 118\beta_{7} + 360\beta_{6} + 14\beta_{5} - 118\beta_{3} Copy content Toggle raw display
ν9\nu^{9}== 135β9+253β8+343β5+253β487β3+135β2343β1430 -135\beta_{9} + 253\beta_{8} + 343\beta_{5} + 253\beta_{4} - 87\beta_{3} + 135\beta_{2} - 343\beta _1 - 430 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1323Z)×\left(\mathbb{Z}/1323\mathbb{Z}\right)^\times.

nn 785785 10811081
χ(n)\chi(n) 1β6-1 - \beta_{6} 1β6-1 - \beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
226.1
−1.02682 + 1.77851i
−0.335166 + 0.580525i
0.247934 0.429435i
0.920620 1.59456i
1.19343 2.06709i
−1.02682 1.77851i
−0.335166 0.580525i
0.247934 + 0.429435i
0.920620 + 1.59456i
1.19343 + 2.06709i
−2.05365 0 2.21746 0.0731228 + 0.126652i 0 0 −0.446582 0 −0.150168 0.260099i
226.2 −0.670333 0 −1.55065 −0.712469 1.23403i 0 0 2.38012 0 0.477591 + 0.827212i
226.3 0.495868 0 −1.75411 1.84629 + 3.19787i 0 0 −1.86155 0 0.915516 + 1.58572i
226.4 1.84124 0 1.39017 −0.667377 1.15593i 0 0 −1.12285 0 −1.22880 2.12835i
226.5 2.38687 0 3.69714 1.46043 + 2.52954i 0 0 4.05086 0 3.48586 + 6.03769i
802.1 −2.05365 0 2.21746 0.0731228 0.126652i 0 0 −0.446582 0 −0.150168 + 0.260099i
802.2 −0.670333 0 −1.55065 −0.712469 + 1.23403i 0 0 2.38012 0 0.477591 0.827212i
802.3 0.495868 0 −1.75411 1.84629 3.19787i 0 0 −1.86155 0 0.915516 1.58572i
802.4 1.84124 0 1.39017 −0.667377 + 1.15593i 0 0 −1.12285 0 −1.22880 + 2.12835i
802.5 2.38687 0 3.69714 1.46043 2.52954i 0 0 4.05086 0 3.48586 6.03769i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 226.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1323.2.h.f 10
3.b odd 2 1 441.2.h.f 10
7.b odd 2 1 189.2.h.b 10
7.c even 3 1 1323.2.f.f 10
7.c even 3 1 1323.2.g.f 10
7.d odd 6 1 189.2.g.b 10
7.d odd 6 1 1323.2.f.e 10
9.c even 3 1 1323.2.g.f 10
9.d odd 6 1 441.2.g.f 10
21.c even 2 1 63.2.h.b yes 10
21.g even 6 1 63.2.g.b 10
21.g even 6 1 441.2.f.e 10
21.h odd 6 1 441.2.f.f 10
21.h odd 6 1 441.2.g.f 10
28.d even 2 1 3024.2.q.i 10
28.f even 6 1 3024.2.t.i 10
63.g even 3 1 1323.2.f.f 10
63.h even 3 1 inner 1323.2.h.f 10
63.h even 3 1 3969.2.a.bb 5
63.i even 6 1 63.2.h.b yes 10
63.i even 6 1 3969.2.a.z 5
63.j odd 6 1 441.2.h.f 10
63.j odd 6 1 3969.2.a.ba 5
63.k odd 6 1 567.2.e.e 10
63.k odd 6 1 1323.2.f.e 10
63.l odd 6 1 189.2.g.b 10
63.l odd 6 1 567.2.e.e 10
63.n odd 6 1 441.2.f.f 10
63.o even 6 1 63.2.g.b 10
63.o even 6 1 567.2.e.f 10
63.s even 6 1 441.2.f.e 10
63.s even 6 1 567.2.e.f 10
63.t odd 6 1 189.2.h.b 10
63.t odd 6 1 3969.2.a.bc 5
84.h odd 2 1 1008.2.q.i 10
84.j odd 6 1 1008.2.t.i 10
252.r odd 6 1 1008.2.q.i 10
252.s odd 6 1 1008.2.t.i 10
252.bi even 6 1 3024.2.t.i 10
252.bj even 6 1 3024.2.q.i 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.g.b 10 21.g even 6 1
63.2.g.b 10 63.o even 6 1
63.2.h.b yes 10 21.c even 2 1
63.2.h.b yes 10 63.i even 6 1
189.2.g.b 10 7.d odd 6 1
189.2.g.b 10 63.l odd 6 1
189.2.h.b 10 7.b odd 2 1
189.2.h.b 10 63.t odd 6 1
441.2.f.e 10 21.g even 6 1
441.2.f.e 10 63.s even 6 1
441.2.f.f 10 21.h odd 6 1
441.2.f.f 10 63.n odd 6 1
441.2.g.f 10 9.d odd 6 1
441.2.g.f 10 21.h odd 6 1
441.2.h.f 10 3.b odd 2 1
441.2.h.f 10 63.j odd 6 1
567.2.e.e 10 63.k odd 6 1
567.2.e.e 10 63.l odd 6 1
567.2.e.f 10 63.o even 6 1
567.2.e.f 10 63.s even 6 1
1008.2.q.i 10 84.h odd 2 1
1008.2.q.i 10 252.r odd 6 1
1008.2.t.i 10 84.j odd 6 1
1008.2.t.i 10 252.s odd 6 1
1323.2.f.e 10 7.d odd 6 1
1323.2.f.e 10 63.k odd 6 1
1323.2.f.f 10 7.c even 3 1
1323.2.f.f 10 63.g even 3 1
1323.2.g.f 10 7.c even 3 1
1323.2.g.f 10 9.c even 3 1
1323.2.h.f 10 1.a even 1 1 trivial
1323.2.h.f 10 63.h even 3 1 inner
3024.2.q.i 10 28.d even 2 1
3024.2.q.i 10 252.bj even 6 1
3024.2.t.i 10 28.f even 6 1
3024.2.t.i 10 252.bi even 6 1
3969.2.a.z 5 63.i even 6 1
3969.2.a.ba 5 63.j odd 6 1
3969.2.a.bb 5 63.h even 3 1
3969.2.a.bc 5 63.t odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1323,[χ])S_{2}^{\mathrm{new}}(1323, [\chi]):

T252T245T23+9T22+3T23 T_{2}^{5} - 2T_{2}^{4} - 5T_{2}^{3} + 9T_{2}^{2} + 3T_{2} - 3 Copy content Toggle raw display
T5104T59+21T5816T57+79T56+51T55+402T54+294T53+378T5254T5+9 T_{5}^{10} - 4T_{5}^{9} + 21T_{5}^{8} - 16T_{5}^{7} + 79T_{5}^{6} + 51T_{5}^{5} + 402T_{5}^{4} + 294T_{5}^{3} + 378T_{5}^{2} - 54T_{5} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T52T45T3+3)2 (T^{5} - 2 T^{4} - 5 T^{3} + \cdots - 3)^{2} Copy content Toggle raw display
33 T10 T^{10} Copy content Toggle raw display
55 T104T9++9 T^{10} - 4 T^{9} + \cdots + 9 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T10+4T9++225 T^{10} + 4 T^{9} + \cdots + 225 Copy content Toggle raw display
1313 T108T9++25 T^{10} - 8 T^{9} + \cdots + 25 Copy content Toggle raw display
1717 T1012T9++81 T^{10} - 12 T^{9} + \cdots + 81 Copy content Toggle raw display
1919 T10+T9++185761 T^{10} + T^{9} + \cdots + 185761 Copy content Toggle raw display
2323 T10+3T9++2595321 T^{10} + 3 T^{9} + \cdots + 2595321 Copy content Toggle raw display
2929 T10+7T9++81 T^{10} + 7 T^{9} + \cdots + 81 Copy content Toggle raw display
3131 (T5+3T4++285)2 (T^{5} + 3 T^{4} + \cdots + 285)^{2} Copy content Toggle raw display
3737 T10+96T8++82944 T^{10} + 96 T^{8} + \cdots + 82944 Copy content Toggle raw display
4141 T105T9++2025 T^{10} - 5 T^{9} + \cdots + 2025 Copy content Toggle raw display
4343 T10+7T9++687241 T^{10} + 7 T^{9} + \cdots + 687241 Copy content Toggle raw display
4747 (T5+27T4+6615)2 (T^{5} + 27 T^{4} + \cdots - 6615)^{2} Copy content Toggle raw display
5353 T1021T9++178929 T^{10} - 21 T^{9} + \cdots + 178929 Copy content Toggle raw display
5959 (T5+30T4+5625)2 (T^{5} + 30 T^{4} + \cdots - 5625)^{2} Copy content Toggle raw display
6161 (T5+14T4+34T3+1)2 (T^{5} + 14 T^{4} + 34 T^{3} + \cdots - 1)^{2} Copy content Toggle raw display
6767 (T52T4+7121)2 (T^{5} - 2 T^{4} + \cdots - 7121)^{2} Copy content Toggle raw display
7171 (T53T4168T3++81)2 (T^{5} - 3 T^{4} - 168 T^{3} + \cdots + 81)^{2} Copy content Toggle raw display
7373 T10+15T9++772641 T^{10} + 15 T^{9} + \cdots + 772641 Copy content Toggle raw display
7979 (T54T4++193)2 (T^{5} - 4 T^{4} + \cdots + 193)^{2} Copy content Toggle raw display
8383 T10++218123361 T^{10} + \cdots + 218123361 Copy content Toggle raw display
8989 T1028T9++7080921 T^{10} - 28 T^{9} + \cdots + 7080921 Copy content Toggle raw display
9797 T10++2307745521 T^{10} + \cdots + 2307745521 Copy content Toggle raw display
show more
show less