L(s) = 1 | + 2.38·2-s + 3.69·4-s + (1.46 − 2.52i)5-s + 4.05·8-s + (3.48 − 6.03i)10-s + (−0.676 − 1.17i)11-s + (0.733 + 1.26i)13-s + 2.27·16-s + (1.65 − 2.86i)17-s + (1.10 + 1.91i)19-s + (5.39 − 9.35i)20-s + (−1.61 − 2.79i)22-s + (1.31 − 2.27i)23-s + (−1.76 − 3.05i)25-s + (1.74 + 3.03i)26-s + ⋯ |
L(s) = 1 | + 1.68·2-s + 1.84·4-s + (0.653 − 1.13i)5-s + 1.43·8-s + (1.10 − 1.90i)10-s + (−0.204 − 0.353i)11-s + (0.203 + 0.352i)13-s + 0.568·16-s + (0.401 − 0.695i)17-s + (0.253 + 0.438i)19-s + (1.20 − 2.09i)20-s + (−0.344 − 0.596i)22-s + (0.274 − 0.474i)23-s + (−0.353 − 0.611i)25-s + (0.343 + 0.594i)26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.747 + 0.663i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1323 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.747 + 0.663i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.890322082\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.890322082\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - 2.38T + 2T^{2} \) |
| 5 | \( 1 + (-1.46 + 2.52i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.676 + 1.17i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.733 - 1.26i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.65 + 2.86i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.10 - 1.91i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.31 + 2.27i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.521 - 0.903i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 3.27T + 31T^{2} \) |
| 37 | \( 1 + (-5.43 - 9.41i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.904 + 1.56i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.17 - 3.76i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.97T + 47T^{2} \) |
| 53 | \( 1 + (-3.22 + 5.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 12.2T + 59T^{2} \) |
| 61 | \( 1 + 0.559T + 61T^{2} \) |
| 67 | \( 1 - 12.8T + 67T^{2} \) |
| 71 | \( 1 + 12.9T + 71T^{2} \) |
| 73 | \( 1 + (5.22 - 9.05i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 0.767T + 79T^{2} \) |
| 83 | \( 1 + (0.983 - 1.70i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-3.20 - 5.54i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.14 + 7.17i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.523548685908559441368909017227, −8.773733762021038356731958087305, −7.74673582163758599042392524634, −6.67043293262754569070531346060, −5.89677627513529099639385408149, −5.18249648802722584640882290212, −4.63658189273941780309465205325, −3.59080528112370906766423374274, −2.57344883179791376718157268520, −1.32237887330186119731725375770,
1.94684372126581882324238709076, 2.85563572801393743926693329118, 3.60082746443330472463175323661, 4.61132549685255244998003001976, 5.70437655198526131688388929002, 6.03040032010998208769594174772, 7.04572978487890701765045246506, 7.58436850993085972315042509610, 9.021346524766586259315363657894, 10.03419549722815090238794609310