Properties

Label 441.2.f.f
Level 441441
Weight 22
Character orbit 441.f
Analytic conductor 3.5213.521
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(148,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 441=3272 441 = 3^{2} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 441.f (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.521402729143.52140272914
Analytic rank: 00
Dimension: 1010
Relative dimension: 55 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 10.0.991381711347.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x102x9+9x88x7+40x636x5+90x43x3+36x29x+9 x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2+β4q3+(β8+β6+β4+1)q4+(β8+β7+β5)q5+(β9β8+β7++1)q6+(β9β31)q8++(3β9+β7+β5++5)q99+O(q100) q + \beta_1 q^{2} + \beta_{4} q^{3} + (\beta_{8} + \beta_{6} + \beta_{4} + \cdots - 1) q^{4} + ( - \beta_{8} + \beta_{7} + \beta_{5}) q^{5} + (\beta_{9} - \beta_{8} + \beta_{7} + \cdots + 1) q^{6} + (\beta_{9} - \beta_{3} - 1) q^{8}+ \cdots + ( - 3 \beta_{9} + \beta_{7} + \beta_{5} + \cdots + 5) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q+2q2+q34q44q5+2q66q87q914q10+4q11+2q12+8q1319q15+2q16+24q172q18+2q195q20q22+3q23++35q99+O(q100) 10 q + 2 q^{2} + q^{3} - 4 q^{4} - 4 q^{5} + 2 q^{6} - 6 q^{8} - 7 q^{9} - 14 q^{10} + 4 q^{11} + 2 q^{12} + 8 q^{13} - 19 q^{15} + 2 q^{16} + 24 q^{17} - 2 q^{18} + 2 q^{19} - 5 q^{20} - q^{22} + 3 q^{23}+ \cdots + 35 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x102x9+9x88x7+40x636x5+90x43x3+36x29x+9 x^{10} - 2x^{9} + 9x^{8} - 8x^{7} + 40x^{6} - 36x^{5} + 90x^{4} - 3x^{3} + 36x^{2} - 9x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (2ν9+9ν83ν7+95ν6+18ν5+402ν487ν3+936ν2+342ν+72)/189 ( 2\nu^{9} + 9\nu^{8} - 3\nu^{7} + 95\nu^{6} + 18\nu^{5} + 402\nu^{4} - 87\nu^{3} + 936\nu^{2} + 342\nu + 72 ) / 189 Copy content Toggle raw display
β3\beta_{3}== (2ν9+ν812ν78ν668ν530ν4123ν3204ν2270ν63)/63 ( -2\nu^{9} + \nu^{8} - 12\nu^{7} - 8\nu^{6} - 68\nu^{5} - 30\nu^{4} - 123\nu^{3} - 204\nu^{2} - 270\nu - 63 ) / 63 Copy content Toggle raw display
β4\beta_{4}== (17ν924ν8+159ν7106ν6+786ν5417ν4+1893ν3++639)/567 ( 17 \nu^{9} - 24 \nu^{8} + 159 \nu^{7} - 106 \nu^{6} + 786 \nu^{5} - 417 \nu^{4} + 1893 \nu^{3} + \cdots + 639 ) / 567 Copy content Toggle raw display
β5\beta_{5}== (16ν939ν8+156ν7176ν6+663ν5780ν4+1680ν3+180)/567 ( 16 \nu^{9} - 39 \nu^{8} + 156 \nu^{7} - 176 \nu^{6} + 663 \nu^{5} - 780 \nu^{4} + 1680 \nu^{3} + \cdots - 180 ) / 567 Copy content Toggle raw display
β6\beta_{6}== (20ν924ν8+141ν74ν6+624ν557ν4+1020ν3++504)/567 ( 20 \nu^{9} - 24 \nu^{8} + 141 \nu^{7} - 4 \nu^{6} + 624 \nu^{5} - 57 \nu^{4} + 1020 \nu^{3} + \cdots + 504 ) / 567 Copy content Toggle raw display
β7\beta_{7}== (8ν912ν8+69ν743ν6+330ν5219ν4+732ν345ν2+477ν306)/189 ( 8\nu^{9} - 12\nu^{8} + 69\nu^{7} - 43\nu^{6} + 330\nu^{5} - 219\nu^{4} + 732\nu^{3} - 45\nu^{2} + 477\nu - 306 ) / 189 Copy content Toggle raw display
β8\beta_{8}== (71ν9+123ν8591ν7+403ν62604ν5+1794ν45214ν3+234)/567 ( - 71 \nu^{9} + 123 \nu^{8} - 591 \nu^{7} + 403 \nu^{6} - 2604 \nu^{5} + 1794 \nu^{4} - 5214 \nu^{3} + \cdots - 234 ) / 567 Copy content Toggle raw display
β9\beta_{9}== (82ν9+165ν8732ν7+632ν63264ν5+2850ν47260ν3++720)/567 ( - 82 \nu^{9} + 165 \nu^{8} - 732 \nu^{7} + 632 \nu^{6} - 3264 \nu^{5} + 2850 \nu^{4} - 7260 \nu^{3} + \cdots + 720 ) / 567 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β8+3β6+β4β23 \beta_{8} + 3\beta_{6} + \beta_{4} - \beta_{2} - 3 Copy content Toggle raw display
ν3\nu^{3}== β9+4β5β34β11 \beta_{9} + 4\beta_{5} - \beta_{3} - 4\beta _1 - 1 Copy content Toggle raw display
ν4\nu^{4}== 5β85β713β6β4β3+4β2β1 -5\beta_{8} - 5\beta_{7} - 13\beta_{6} - \beta_{4} - \beta_{3} + 4\beta_{2} - \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 7β9+β82β77β619β5β4+β2+7 -7\beta_{9} + \beta_{8} - 2\beta_{7} - 7\beta_{6} - 19\beta_{5} - \beta_{4} + \beta_{2} + 7 Copy content Toggle raw display
ν6\nu^{6}== 10β9+9β8+15β710β515β4+10β3+9β2+10β1+61 -10\beta_{9} + 9\beta_{8} + 15\beta_{7} - 10\beta_{5} - 15\beta_{4} + 10\beta_{3} + 9\beta_{2} + 10\beta _1 + 61 Copy content Toggle raw display
ν7\nu^{7}== 11β8+11β7+46β6+19β4+43β3+8β2+94β1 11\beta_{8} + 11\beta_{7} + 46\beta_{6} + 19\beta_{4} + 43\beta_{3} + 8\beta_{2} + 94\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 73β9+56β8+62β7+298β6+76β5+118β4118β2298 73\beta_{9} + 56\beta_{8} + 62\beta_{7} + 298\beta_{6} + 76\beta_{5} + 118\beta_{4} - 118\beta_{2} - 298 Copy content Toggle raw display
ν9\nu^{9}== 253β9135β8+48β7+478β548β4253β3135β2+295 253 \beta_{9} - 135 \beta_{8} + 48 \beta_{7} + 478 \beta_{5} - 48 \beta_{4} - 253 \beta_{3} - 135 \beta_{2} + \cdots - 295 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/441Z)×\left(\mathbb{Z}/441\mathbb{Z}\right)^\times.

nn 199199 344344
χ(n)\chi(n) 11 1+β6-1 + \beta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
148.1
−1.02682 1.77851i
−0.335166 0.580525i
0.247934 + 0.429435i
0.920620 + 1.59456i
1.19343 + 2.06709i
−1.02682 + 1.77851i
−0.335166 + 0.580525i
0.247934 0.429435i
0.920620 1.59456i
1.19343 2.06709i
−1.02682 1.77851i −0.608729 + 1.62156i −1.10873 + 1.92038i −0.0731228 + 0.126652i 3.50901 0.582422i 0 0.446582 −2.25890 1.97418i 0.300337
148.2 −0.335166 0.580525i 1.27533 1.17198i 0.775327 1.34291i 0.712469 1.23403i −1.10781 0.347551i 0 −2.38012 0.252918 2.98932i −0.955182
148.3 0.247934 + 0.429435i 1.37706 + 1.05058i 0.877057 1.51911i −1.84629 + 3.19787i −0.109735 + 0.851830i 0 1.86155 0.792574 + 2.89341i −1.83103
148.4 0.920620 + 1.59456i −0.195084 1.72103i −0.695084 + 1.20392i 0.667377 1.15593i 2.56469 1.89549i 0 1.12285 −2.92388 + 0.671489i 2.45760
148.5 1.19343 + 2.06709i −1.34857 + 1.08690i −1.84857 + 3.20182i −1.46043 + 2.52954i −3.85615 1.49047i 0 −4.05086 0.637290 2.93153i −6.97172
295.1 −1.02682 + 1.77851i −0.608729 1.62156i −1.10873 1.92038i −0.0731228 0.126652i 3.50901 + 0.582422i 0 0.446582 −2.25890 + 1.97418i 0.300337
295.2 −0.335166 + 0.580525i 1.27533 + 1.17198i 0.775327 + 1.34291i 0.712469 + 1.23403i −1.10781 + 0.347551i 0 −2.38012 0.252918 + 2.98932i −0.955182
295.3 0.247934 0.429435i 1.37706 1.05058i 0.877057 + 1.51911i −1.84629 3.19787i −0.109735 0.851830i 0 1.86155 0.792574 2.89341i −1.83103
295.4 0.920620 1.59456i −0.195084 + 1.72103i −0.695084 1.20392i 0.667377 + 1.15593i 2.56469 + 1.89549i 0 1.12285 −2.92388 0.671489i 2.45760
295.5 1.19343 2.06709i −1.34857 1.08690i −1.84857 3.20182i −1.46043 2.52954i −3.85615 + 1.49047i 0 −4.05086 0.637290 + 2.93153i −6.97172
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 148.5
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.f.f 10
3.b odd 2 1 1323.2.f.f 10
7.b odd 2 1 441.2.f.e 10
7.c even 3 1 441.2.g.f 10
7.c even 3 1 441.2.h.f 10
7.d odd 6 1 63.2.g.b 10
7.d odd 6 1 63.2.h.b yes 10
9.c even 3 1 inner 441.2.f.f 10
9.c even 3 1 3969.2.a.ba 5
9.d odd 6 1 1323.2.f.f 10
9.d odd 6 1 3969.2.a.bb 5
21.c even 2 1 1323.2.f.e 10
21.g even 6 1 189.2.g.b 10
21.g even 6 1 189.2.h.b 10
21.h odd 6 1 1323.2.g.f 10
21.h odd 6 1 1323.2.h.f 10
28.f even 6 1 1008.2.q.i 10
28.f even 6 1 1008.2.t.i 10
63.g even 3 1 441.2.h.f 10
63.h even 3 1 441.2.g.f 10
63.i even 6 1 189.2.g.b 10
63.i even 6 1 567.2.e.e 10
63.j odd 6 1 1323.2.g.f 10
63.k odd 6 1 63.2.h.b yes 10
63.k odd 6 1 567.2.e.f 10
63.l odd 6 1 441.2.f.e 10
63.l odd 6 1 3969.2.a.z 5
63.n odd 6 1 1323.2.h.f 10
63.o even 6 1 1323.2.f.e 10
63.o even 6 1 3969.2.a.bc 5
63.s even 6 1 189.2.h.b 10
63.s even 6 1 567.2.e.e 10
63.t odd 6 1 63.2.g.b 10
63.t odd 6 1 567.2.e.f 10
84.j odd 6 1 3024.2.q.i 10
84.j odd 6 1 3024.2.t.i 10
252.n even 6 1 1008.2.q.i 10
252.r odd 6 1 3024.2.t.i 10
252.bj even 6 1 1008.2.t.i 10
252.bn odd 6 1 3024.2.q.i 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.g.b 10 7.d odd 6 1
63.2.g.b 10 63.t odd 6 1
63.2.h.b yes 10 7.d odd 6 1
63.2.h.b yes 10 63.k odd 6 1
189.2.g.b 10 21.g even 6 1
189.2.g.b 10 63.i even 6 1
189.2.h.b 10 21.g even 6 1
189.2.h.b 10 63.s even 6 1
441.2.f.e 10 7.b odd 2 1
441.2.f.e 10 63.l odd 6 1
441.2.f.f 10 1.a even 1 1 trivial
441.2.f.f 10 9.c even 3 1 inner
441.2.g.f 10 7.c even 3 1
441.2.g.f 10 63.h even 3 1
441.2.h.f 10 7.c even 3 1
441.2.h.f 10 63.g even 3 1
567.2.e.e 10 63.i even 6 1
567.2.e.e 10 63.s even 6 1
567.2.e.f 10 63.k odd 6 1
567.2.e.f 10 63.t odd 6 1
1008.2.q.i 10 28.f even 6 1
1008.2.q.i 10 252.n even 6 1
1008.2.t.i 10 28.f even 6 1
1008.2.t.i 10 252.bj even 6 1
1323.2.f.e 10 21.c even 2 1
1323.2.f.e 10 63.o even 6 1
1323.2.f.f 10 3.b odd 2 1
1323.2.f.f 10 9.d odd 6 1
1323.2.g.f 10 21.h odd 6 1
1323.2.g.f 10 63.j odd 6 1
1323.2.h.f 10 21.h odd 6 1
1323.2.h.f 10 63.n odd 6 1
3024.2.q.i 10 84.j odd 6 1
3024.2.q.i 10 252.bn odd 6 1
3024.2.t.i 10 84.j odd 6 1
3024.2.t.i 10 252.r odd 6 1
3969.2.a.z 5 63.l odd 6 1
3969.2.a.ba 5 9.c even 3 1
3969.2.a.bb 5 9.d odd 6 1
3969.2.a.bc 5 63.o even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(441,[χ])S_{2}^{\mathrm{new}}(441, [\chi]):

T2102T29+9T288T27+40T2636T25+90T243T23+36T229T2+9 T_{2}^{10} - 2T_{2}^{9} + 9T_{2}^{8} - 8T_{2}^{7} + 40T_{2}^{6} - 36T_{2}^{5} + 90T_{2}^{4} - 3T_{2}^{3} + 36T_{2}^{2} - 9T_{2} + 9 Copy content Toggle raw display
T510+4T59+21T58+16T57+79T5651T55+402T54294T53+378T52+54T5+9 T_{5}^{10} + 4T_{5}^{9} + 21T_{5}^{8} + 16T_{5}^{7} + 79T_{5}^{6} - 51T_{5}^{5} + 402T_{5}^{4} - 294T_{5}^{3} + 378T_{5}^{2} + 54T_{5} + 9 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T102T9++9 T^{10} - 2 T^{9} + \cdots + 9 Copy content Toggle raw display
33 T10T9++243 T^{10} - T^{9} + \cdots + 243 Copy content Toggle raw display
55 T10+4T9++9 T^{10} + 4 T^{9} + \cdots + 9 Copy content Toggle raw display
77 T10 T^{10} Copy content Toggle raw display
1111 T104T9++225 T^{10} - 4 T^{9} + \cdots + 225 Copy content Toggle raw display
1313 T108T9++25 T^{10} - 8 T^{9} + \cdots + 25 Copy content Toggle raw display
1717 (T512T4+45T3++9)2 (T^{5} - 12 T^{4} + 45 T^{3} + \cdots + 9)^{2} Copy content Toggle raw display
1919 (T5T441T3++431)2 (T^{5} - T^{4} - 41 T^{3} + \cdots + 431)^{2} Copy content Toggle raw display
2323 T103T9++2595321 T^{10} - 3 T^{9} + \cdots + 2595321 Copy content Toggle raw display
2929 T107T9++81 T^{10} - 7 T^{9} + \cdots + 81 Copy content Toggle raw display
3131 T103T9++81225 T^{10} - 3 T^{9} + \cdots + 81225 Copy content Toggle raw display
3737 (T596T3+288)2 (T^{5} - 96 T^{3} + \cdots - 288)^{2} Copy content Toggle raw display
4141 T10+5T9++2025 T^{10} + 5 T^{9} + \cdots + 2025 Copy content Toggle raw display
4343 T10+7T9++687241 T^{10} + 7 T^{9} + \cdots + 687241 Copy content Toggle raw display
4747 T10+27T9++43758225 T^{10} + 27 T^{9} + \cdots + 43758225 Copy content Toggle raw display
5353 (T521T4++423)2 (T^{5} - 21 T^{4} + \cdots + 423)^{2} Copy content Toggle raw display
5959 T10+30T9++31640625 T^{10} + 30 T^{9} + \cdots + 31640625 Copy content Toggle raw display
6161 T1014T9++1 T^{10} - 14 T^{9} + \cdots + 1 Copy content Toggle raw display
6767 T10+2T9++50708641 T^{10} + 2 T^{9} + \cdots + 50708641 Copy content Toggle raw display
7171 (T5+3T4168T3+81)2 (T^{5} + 3 T^{4} - 168 T^{3} + \cdots - 81)^{2} Copy content Toggle raw display
7373 (T515T4++879)2 (T^{5} - 15 T^{4} + \cdots + 879)^{2} Copy content Toggle raw display
7979 T10+4T9++37249 T^{10} + 4 T^{9} + \cdots + 37249 Copy content Toggle raw display
8383 T10++218123361 T^{10} + \cdots + 218123361 Copy content Toggle raw display
8989 (T528T4++2661)2 (T^{5} - 28 T^{4} + \cdots + 2661)^{2} Copy content Toggle raw display
9797 T10++2307745521 T^{10} + \cdots + 2307745521 Copy content Toggle raw display
show more
show less