Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,2,Mod(148,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.148");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 441.f (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 10.0.991381711347.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
148.1 |
|
−1.02682 | − | 1.77851i | −0.608729 | + | 1.62156i | −1.10873 | + | 1.92038i | −0.0731228 | + | 0.126652i | 3.50901 | − | 0.582422i | 0 | 0.446582 | −2.25890 | − | 1.97418i | 0.300337 | ||||||||||||||||||||||||||||||||||||
148.2 | −0.335166 | − | 0.580525i | 1.27533 | − | 1.17198i | 0.775327 | − | 1.34291i | 0.712469 | − | 1.23403i | −1.10781 | − | 0.347551i | 0 | −2.38012 | 0.252918 | − | 2.98932i | −0.955182 | |||||||||||||||||||||||||||||||||||||
148.3 | 0.247934 | + | 0.429435i | 1.37706 | + | 1.05058i | 0.877057 | − | 1.51911i | −1.84629 | + | 3.19787i | −0.109735 | + | 0.851830i | 0 | 1.86155 | 0.792574 | + | 2.89341i | −1.83103 | |||||||||||||||||||||||||||||||||||||
148.4 | 0.920620 | + | 1.59456i | −0.195084 | − | 1.72103i | −0.695084 | + | 1.20392i | 0.667377 | − | 1.15593i | 2.56469 | − | 1.89549i | 0 | 1.12285 | −2.92388 | + | 0.671489i | 2.45760 | |||||||||||||||||||||||||||||||||||||
148.5 | 1.19343 | + | 2.06709i | −1.34857 | + | 1.08690i | −1.84857 | + | 3.20182i | −1.46043 | + | 2.52954i | −3.85615 | − | 1.49047i | 0 | −4.05086 | 0.637290 | − | 2.93153i | −6.97172 | |||||||||||||||||||||||||||||||||||||
295.1 | −1.02682 | + | 1.77851i | −0.608729 | − | 1.62156i | −1.10873 | − | 1.92038i | −0.0731228 | − | 0.126652i | 3.50901 | + | 0.582422i | 0 | 0.446582 | −2.25890 | + | 1.97418i | 0.300337 | |||||||||||||||||||||||||||||||||||||
295.2 | −0.335166 | + | 0.580525i | 1.27533 | + | 1.17198i | 0.775327 | + | 1.34291i | 0.712469 | + | 1.23403i | −1.10781 | + | 0.347551i | 0 | −2.38012 | 0.252918 | + | 2.98932i | −0.955182 | |||||||||||||||||||||||||||||||||||||
295.3 | 0.247934 | − | 0.429435i | 1.37706 | − | 1.05058i | 0.877057 | + | 1.51911i | −1.84629 | − | 3.19787i | −0.109735 | − | 0.851830i | 0 | 1.86155 | 0.792574 | − | 2.89341i | −1.83103 | |||||||||||||||||||||||||||||||||||||
295.4 | 0.920620 | − | 1.59456i | −0.195084 | + | 1.72103i | −0.695084 | − | 1.20392i | 0.667377 | + | 1.15593i | 2.56469 | + | 1.89549i | 0 | 1.12285 | −2.92388 | − | 0.671489i | 2.45760 | |||||||||||||||||||||||||||||||||||||
295.5 | 1.19343 | − | 2.06709i | −1.34857 | − | 1.08690i | −1.84857 | − | 3.20182i | −1.46043 | − | 2.52954i | −3.85615 | + | 1.49047i | 0 | −4.05086 | 0.637290 | + | 2.93153i | −6.97172 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
Twists
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|