L(s) = 1 | + (1.85 − 0.673i)7-s + (−0.939 − 1.34i)13-s + (−0.515 + 0.0451i)19-s + (0.642 + 0.766i)25-s + (−0.597 − 0.597i)31-s + (0.5 + 0.866i)37-s + (−1.40 + 1.40i)43-s + (2.20 − 1.85i)49-s + (1.15 − 0.811i)61-s + (0.524 + 1.43i)67-s − 1.53i·73-s + (0.0736 − 0.157i)79-s + (−2.64 − 1.85i)91-s + (0.515 + 1.92i)97-s + (−0.5 + 1.86i)103-s + ⋯ |
L(s) = 1 | + (1.85 − 0.673i)7-s + (−0.939 − 1.34i)13-s + (−0.515 + 0.0451i)19-s + (0.642 + 0.766i)25-s + (−0.597 − 0.597i)31-s + (0.5 + 0.866i)37-s + (−1.40 + 1.40i)43-s + (2.20 − 1.85i)49-s + (1.15 − 0.811i)61-s + (0.524 + 1.43i)67-s − 1.53i·73-s + (0.0736 − 0.157i)79-s + (−2.64 − 1.85i)91-s + (0.515 + 1.92i)97-s + (−0.5 + 1.86i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 + 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 + 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.244487813\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.244487813\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-0.5 - 0.866i)T \) |
good | 5 | \( 1 + (-0.642 - 0.766i)T^{2} \) |
| 7 | \( 1 + (-1.85 + 0.673i)T + (0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 + 1.34i)T + (-0.342 + 0.939i)T^{2} \) |
| 17 | \( 1 + (0.342 + 0.939i)T^{2} \) |
| 19 | \( 1 + (0.515 - 0.0451i)T + (0.984 - 0.173i)T^{2} \) |
| 23 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + (0.597 + 0.597i)T + iT^{2} \) |
| 41 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 43 | \( 1 + (1.40 - 1.40i)T - iT^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 59 | \( 1 + (0.642 - 0.766i)T^{2} \) |
| 61 | \( 1 + (-1.15 + 0.811i)T + (0.342 - 0.939i)T^{2} \) |
| 67 | \( 1 + (-0.524 - 1.43i)T + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + 1.53iT - T^{2} \) |
| 79 | \( 1 + (-0.0736 + 0.157i)T + (-0.642 - 0.766i)T^{2} \) |
| 83 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 89 | \( 1 + (-0.642 + 0.766i)T^{2} \) |
| 97 | \( 1 + (-0.515 - 1.92i)T + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.926324758383409116539055704698, −8.795305771154110168948889508193, −7.86899562245977610530765631671, −7.69125641207217360742208235392, −6.55025601217139659162493751853, −5.20155837222902189536215190991, −4.91368697205723218659000058226, −3.77401048436069741270479138675, −2.47150732919114263874680433570, −1.24084188896274624280642742284,
1.72905186129401859337706077276, 2.43410113858641946287121224221, 4.11061941034522947012146270662, 4.83321656062107793627133931057, 5.50714778317462828764922993450, 6.73430463999861716760983550690, 7.46100969658141556416640213980, 8.470037252276384233910469305741, 8.822699257324894203508307389907, 9.847936957115270335439062319507