L(s) = 1 | + (1.85 − 0.673i)7-s + (−0.939 − 1.34i)13-s + (−0.515 + 0.0451i)19-s + (0.642 + 0.766i)25-s + (−0.597 − 0.597i)31-s + (0.5 + 0.866i)37-s + (−1.40 + 1.40i)43-s + (2.20 − 1.85i)49-s + (1.15 − 0.811i)61-s + (0.524 + 1.43i)67-s − 1.53i·73-s + (0.0736 − 0.157i)79-s + (−2.64 − 1.85i)91-s + (0.515 + 1.92i)97-s + (−0.5 + 1.86i)103-s + ⋯ |
L(s) = 1 | + (1.85 − 0.673i)7-s + (−0.939 − 1.34i)13-s + (−0.515 + 0.0451i)19-s + (0.642 + 0.766i)25-s + (−0.597 − 0.597i)31-s + (0.5 + 0.866i)37-s + (−1.40 + 1.40i)43-s + (2.20 − 1.85i)49-s + (1.15 − 0.811i)61-s + (0.524 + 1.43i)67-s − 1.53i·73-s + (0.0736 − 0.157i)79-s + (−2.64 − 1.85i)91-s + (0.515 + 1.92i)97-s + (−0.5 + 1.86i)103-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.873+0.487i)Λ(1−s)
Λ(s)=(=(1332s/2ΓC(s)L(s)(0.873+0.487i)Λ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
0.873+0.487i
|
Analytic conductor: |
0.664754 |
Root analytic conductor: |
0.815324 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(1297,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :0), 0.873+0.487i)
|
Particular Values
L(21) |
≈ |
1.244487813 |
L(21) |
≈ |
1.244487813 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1+(−0.5−0.866i)T |
good | 5 | 1+(−0.642−0.766i)T2 |
| 7 | 1+(−1.85+0.673i)T+(0.766−0.642i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.939+1.34i)T+(−0.342+0.939i)T2 |
| 17 | 1+(0.342+0.939i)T2 |
| 19 | 1+(0.515−0.0451i)T+(0.984−0.173i)T2 |
| 23 | 1+(−0.866+0.5i)T2 |
| 29 | 1+(−0.866−0.5i)T2 |
| 31 | 1+(0.597+0.597i)T+iT2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(1.40−1.40i)T−iT2 |
| 47 | 1+(−0.5−0.866i)T2 |
| 53 | 1+(0.766+0.642i)T2 |
| 59 | 1+(0.642−0.766i)T2 |
| 61 | 1+(−1.15+0.811i)T+(0.342−0.939i)T2 |
| 67 | 1+(−0.524−1.43i)T+(−0.766+0.642i)T2 |
| 71 | 1+(0.173+0.984i)T2 |
| 73 | 1+1.53iT−T2 |
| 79 | 1+(−0.0736+0.157i)T+(−0.642−0.766i)T2 |
| 83 | 1+(−0.939+0.342i)T2 |
| 89 | 1+(−0.642+0.766i)T2 |
| 97 | 1+(−0.515−1.92i)T+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.926324758383409116539055704698, −8.795305771154110168948889508193, −7.86899562245977610530765631671, −7.69125641207217360742208235392, −6.55025601217139659162493751853, −5.20155837222902189536215190991, −4.91368697205723218659000058226, −3.77401048436069741270479138675, −2.47150732919114263874680433570, −1.24084188896274624280642742284,
1.72905186129401859337706077276, 2.43410113858641946287121224221, 4.11061941034522947012146270662, 4.83321656062107793627133931057, 5.50714778317462828764922993450, 6.73430463999861716760983550690, 7.46100969658141556416640213980, 8.470037252276384233910469305741, 8.822699257324894203508307389907, 9.847936957115270335439062319507