Properties

Label 1332.1.dn.a
Level $1332$
Weight $1$
Character orbit 1332.dn
Analytic conductor $0.665$
Analytic rank $0$
Dimension $12$
Projective image $D_{36}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(109,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 0, 19]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1332.dn (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.664754596827\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{36}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{36} - \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( - \zeta_{36}^{15} - \zeta_{36}^{5}) q^{7} + ( - \zeta_{36}^{9} + \zeta_{36}^{8}) q^{13} + ( - \zeta_{36}^{4} + \zeta_{36}) q^{19} - \zeta_{36}^{11} q^{25} + (\zeta_{36}^{17} - \zeta_{36}^{10}) q^{31} + \cdots + ( - \zeta_{36}^{14} - \zeta_{36}) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{37} + 6 q^{49} - 6 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{36}^{13}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
0.342020 + 0.939693i
−0.984808 + 0.173648i
0.642788 + 0.766044i
−0.984808 0.173648i
−0.642788 + 0.766044i
−0.342020 + 0.939693i
0.342020 0.939693i
0.642788 0.766044i
0.984808 + 0.173648i
−0.642788 0.766044i
0.984808 0.173648i
−0.342020 0.939693i
0 0 0 0 0 −1.85083 + 0.673648i 0 0 0
217.1 0 0 0 0 0 −0.223238 1.26604i 0 0 0
505.1 0 0 0 0 0 −0.524005 + 0.439693i 0 0 0
577.1 0 0 0 0 0 −0.223238 + 1.26604i 0 0 0
649.1 0 0 0 0 0 0.524005 + 0.439693i 0 0 0
685.1 0 0 0 0 0 1.85083 + 0.673648i 0 0 0
721.1 0 0 0 0 0 −1.85083 0.673648i 0 0 0
757.1 0 0 0 0 0 −0.524005 0.439693i 0 0 0
829.1 0 0 0 0 0 0.223238 1.26604i 0 0 0
901.1 0 0 0 0 0 0.524005 0.439693i 0 0 0
1189.1 0 0 0 0 0 0.223238 + 1.26604i 0 0 0
1297.1 0 0 0 0 0 1.85083 0.673648i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
37.i odd 36 1 inner
111.q even 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.1.dn.a 12
3.b odd 2 1 CM 1332.1.dn.a 12
37.i odd 36 1 inner 1332.1.dn.a 12
111.q even 36 1 inner 1332.1.dn.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1332.1.dn.a 12 1.a even 1 1 trivial
1332.1.dn.a 12 3.b odd 2 1 CM
1332.1.dn.a 12 37.i odd 36 1 inner
1332.1.dn.a 12 111.q even 36 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1332, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} \) Copy content Toggle raw display
$7$ \( T^{12} - 3 T^{10} + \cdots + 9 \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} + 6 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{12} \) Copy content Toggle raw display
$19$ \( T^{12} + 4 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} \) Copy content Toggle raw display
$31$ \( T^{12} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$37$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$41$ \( T^{12} \) Copy content Toggle raw display
$43$ \( T^{12} - 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( T^{12} \) Copy content Toggle raw display
$53$ \( T^{12} \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} - 4 T^{9} + \cdots + 64 \) Copy content Toggle raw display
$67$ \( T^{12} - 3 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( (T^{6} + 6 T^{4} + 9 T^{2} + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} - 3 T^{10} + \cdots + 1 \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} \) Copy content Toggle raw display
$97$ \( T^{12} + 2 T^{9} + \cdots + 1 \) Copy content Toggle raw display
show more
show less