Properties

Label 1332.1.dn.a
Level 13321332
Weight 11
Character orbit 1332.dn
Analytic conductor 0.6650.665
Analytic rank 00
Dimension 1212
Projective image D36D_{36}
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(109,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([0, 0, 19]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.109");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1332=223237 1332 = 2^{2} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1332.dn (of order 3636, degree 1212, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6647545968270.664754596827
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D36D_{36}
Projective field: Galois closure of Q[x]/(x36)\mathbb{Q}[x]/(x^{36} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ3615ζ365)q7+(ζ369+ζ368)q13+(ζ364+ζ36)q19ζ3611q25+(ζ3617ζ3610)q31++(ζ3614ζ36)q97+O(q100) q + ( - \zeta_{36}^{15} - \zeta_{36}^{5}) q^{7} + ( - \zeta_{36}^{9} + \zeta_{36}^{8}) q^{13} + ( - \zeta_{36}^{4} + \zeta_{36}) q^{19} - \zeta_{36}^{11} q^{25} + (\zeta_{36}^{17} - \zeta_{36}^{10}) q^{31} + \cdots + ( - \zeta_{36}^{14} - \zeta_{36}) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q37+6q496q91+O(q100) 12 q + 6 q^{37} + 6 q^{49} - 6 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1332Z)×\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times.

nn 667667 10371037 12971297
χ(n)\chi(n) 11 11 ζ3613\zeta_{36}^{13}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
109.1
0.342020 + 0.939693i
−0.984808 + 0.173648i
0.642788 + 0.766044i
−0.984808 0.173648i
−0.642788 + 0.766044i
−0.342020 + 0.939693i
0.342020 0.939693i
0.642788 0.766044i
0.984808 + 0.173648i
−0.642788 0.766044i
0.984808 0.173648i
−0.342020 0.939693i
0 0 0 0 0 −1.85083 + 0.673648i 0 0 0
217.1 0 0 0 0 0 −0.223238 1.26604i 0 0 0
505.1 0 0 0 0 0 −0.524005 + 0.439693i 0 0 0
577.1 0 0 0 0 0 −0.223238 + 1.26604i 0 0 0
649.1 0 0 0 0 0 0.524005 + 0.439693i 0 0 0
685.1 0 0 0 0 0 1.85083 + 0.673648i 0 0 0
721.1 0 0 0 0 0 −1.85083 0.673648i 0 0 0
757.1 0 0 0 0 0 −0.524005 0.439693i 0 0 0
829.1 0 0 0 0 0 0.223238 1.26604i 0 0 0
901.1 0 0 0 0 0 0.524005 0.439693i 0 0 0
1189.1 0 0 0 0 0 0.223238 + 1.26604i 0 0 0
1297.1 0 0 0 0 0 1.85083 0.673648i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 109.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
37.i odd 36 1 inner
111.q even 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.1.dn.a 12
3.b odd 2 1 CM 1332.1.dn.a 12
37.i odd 36 1 inner 1332.1.dn.a 12
111.q even 36 1 inner 1332.1.dn.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1332.1.dn.a 12 1.a even 1 1 trivial
1332.1.dn.a 12 3.b odd 2 1 CM
1332.1.dn.a 12 37.i odd 36 1 inner
1332.1.dn.a 12 111.q even 36 1 inner

Hecke kernels

This newform subspace is the entire newspace S1new(1332,[χ])S_{1}^{\mathrm{new}}(1332, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T123T10++9 T^{12} - 3 T^{10} + \cdots + 9 Copy content Toggle raw display
1111 T12 T^{12} Copy content Toggle raw display
1313 T12+6T10++1 T^{12} + 6 T^{10} + \cdots + 1 Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12+4T9++1 T^{12} + 4 T^{9} + \cdots + 1 Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T12+2T9++1 T^{12} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
3737 (T2T+1)6 (T^{2} - T + 1)^{6} Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T122T9++1 T^{12} - 2 T^{9} + \cdots + 1 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T124T9++64 T^{12} - 4 T^{9} + \cdots + 64 Copy content Toggle raw display
6767 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 (T6+6T4+9T2+1)2 (T^{6} + 6 T^{4} + 9 T^{2} + 1)^{2} Copy content Toggle raw display
7979 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12+2T9++1 T^{12} + 2 T^{9} + \cdots + 1 Copy content Toggle raw display
show more
show less