Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1332,1,Mod(109,1332)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([0, 0, 19]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1332.109");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1332.dn (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The -expansion and trace form are shown below.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 |
|
0 | 0 | 0 | 0 | 0 | −1.85083 | + | 0.673648i | 0 | 0 | 0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
217.1 | 0 | 0 | 0 | 0 | 0 | −0.223238 | − | 1.26604i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
505.1 | 0 | 0 | 0 | 0 | 0 | −0.524005 | + | 0.439693i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
577.1 | 0 | 0 | 0 | 0 | 0 | −0.223238 | + | 1.26604i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
649.1 | 0 | 0 | 0 | 0 | 0 | 0.524005 | + | 0.439693i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
685.1 | 0 | 0 | 0 | 0 | 0 | 1.85083 | + | 0.673648i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
721.1 | 0 | 0 | 0 | 0 | 0 | −1.85083 | − | 0.673648i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
757.1 | 0 | 0 | 0 | 0 | 0 | −0.524005 | − | 0.439693i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
829.1 | 0 | 0 | 0 | 0 | 0 | 0.223238 | − | 1.26604i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
901.1 | 0 | 0 | 0 | 0 | 0 | 0.524005 | − | 0.439693i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1189.1 | 0 | 0 | 0 | 0 | 0 | 0.223238 | + | 1.26604i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
1297.1 | 0 | 0 | 0 | 0 | 0 | 1.85083 | − | 0.673648i | 0 | 0 | 0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | CM by |
37.i | odd | 36 | 1 | inner |
111.q | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1332.1.dn.a | ✓ | 12 |
3.b | odd | 2 | 1 | CM | 1332.1.dn.a | ✓ | 12 |
37.i | odd | 36 | 1 | inner | 1332.1.dn.a | ✓ | 12 |
111.q | even | 36 | 1 | inner | 1332.1.dn.a | ✓ | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1332.1.dn.a | ✓ | 12 | 1.a | even | 1 | 1 | trivial |
1332.1.dn.a | ✓ | 12 | 3.b | odd | 2 | 1 | CM |
1332.1.dn.a | ✓ | 12 | 37.i | odd | 36 | 1 | inner |
1332.1.dn.a | ✓ | 12 | 111.q | even | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace .