L(s) = 1 | + (−1.85 − 0.673i)7-s + (−0.939 − 0.657i)13-s + (0.168 − 1.92i)19-s + (−0.642 + 0.766i)25-s + (−1.28 − 1.28i)31-s + (0.5 − 0.866i)37-s + (−0.123 + 0.123i)43-s + (2.20 + 1.85i)49-s + (−0.811 + 1.15i)61-s + (−0.524 + 1.43i)67-s − 1.53i·73-s + (1.80 − 0.842i)79-s + (1.29 + 1.85i)91-s + (−0.168 − 0.0451i)97-s + (−0.5 + 0.133i)103-s + ⋯ |
L(s) = 1 | + (−1.85 − 0.673i)7-s + (−0.939 − 0.657i)13-s + (0.168 − 1.92i)19-s + (−0.642 + 0.766i)25-s + (−1.28 − 1.28i)31-s + (0.5 − 0.866i)37-s + (−0.123 + 0.123i)43-s + (2.20 + 1.85i)49-s + (−0.811 + 1.15i)61-s + (−0.524 + 1.43i)67-s − 1.53i·73-s + (1.80 − 0.842i)79-s + (1.29 + 1.85i)91-s + (−0.168 − 0.0451i)97-s + (−0.5 + 0.133i)103-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)(−0.566+0.823i)Λ(1−s)
Λ(s)=(=(1332s/2ΓC(s)L(s)(−0.566+0.823i)Λ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
−0.566+0.823i
|
Analytic conductor: |
0.664754 |
Root analytic conductor: |
0.815324 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(721,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :0), −0.566+0.823i)
|
Particular Values
L(21) |
≈ |
0.5049873551 |
L(21) |
≈ |
0.5049873551 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1+(−0.5+0.866i)T |
good | 5 | 1+(0.642−0.766i)T2 |
| 7 | 1+(1.85+0.673i)T+(0.766+0.642i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(0.939+0.657i)T+(0.342+0.939i)T2 |
| 17 | 1+(−0.342+0.939i)T2 |
| 19 | 1+(−0.168+1.92i)T+(−0.984−0.173i)T2 |
| 23 | 1+(0.866+0.5i)T2 |
| 29 | 1+(0.866−0.5i)T2 |
| 31 | 1+(1.28+1.28i)T+iT2 |
| 41 | 1+(0.939−0.342i)T2 |
| 43 | 1+(0.123−0.123i)T−iT2 |
| 47 | 1+(−0.5+0.866i)T2 |
| 53 | 1+(0.766−0.642i)T2 |
| 59 | 1+(−0.642−0.766i)T2 |
| 61 | 1+(0.811−1.15i)T+(−0.342−0.939i)T2 |
| 67 | 1+(0.524−1.43i)T+(−0.766−0.642i)T2 |
| 71 | 1+(0.173−0.984i)T2 |
| 73 | 1+1.53iT−T2 |
| 79 | 1+(−1.80+0.842i)T+(0.642−0.766i)T2 |
| 83 | 1+(−0.939−0.342i)T2 |
| 89 | 1+(0.642+0.766i)T2 |
| 97 | 1+(0.168+0.0451i)T+(0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.392260685012751961610570287090, −9.170337697250141729081520463292, −7.55325936776091187030723233446, −7.23561438585920548687584866610, −6.29262214612466102001980359763, −5.44811283756963351702039574318, −4.28573659152661014041654191763, −3.32841181680964320142224985181, −2.51177254433627628489867784321, −0.39427750236906976356026398143,
2.00522407425586386852916414988, 3.12801713952591114319004930112, 3.89485036267912577302139568733, 5.20577793816332326247710498479, 6.10504159341156488054598197598, 6.66089459558415994355222556242, 7.61995113886796291216933857644, 8.598937055363214273633810543706, 9.549481777389093294177599514786, 9.812068523232340843838557427239