L(s) = 1 | + (−1.85 − 0.673i)7-s + (−0.939 − 0.657i)13-s + (0.168 − 1.92i)19-s + (−0.642 + 0.766i)25-s + (−1.28 − 1.28i)31-s + (0.5 − 0.866i)37-s + (−0.123 + 0.123i)43-s + (2.20 + 1.85i)49-s + (−0.811 + 1.15i)61-s + (−0.524 + 1.43i)67-s − 1.53i·73-s + (1.80 − 0.842i)79-s + (1.29 + 1.85i)91-s + (−0.168 − 0.0451i)97-s + (−0.5 + 0.133i)103-s + ⋯ |
L(s) = 1 | + (−1.85 − 0.673i)7-s + (−0.939 − 0.657i)13-s + (0.168 − 1.92i)19-s + (−0.642 + 0.766i)25-s + (−1.28 − 1.28i)31-s + (0.5 − 0.866i)37-s + (−0.123 + 0.123i)43-s + (2.20 + 1.85i)49-s + (−0.811 + 1.15i)61-s + (−0.524 + 1.43i)67-s − 1.53i·73-s + (1.80 − 0.842i)79-s + (1.29 + 1.85i)91-s + (−0.168 − 0.0451i)97-s + (−0.5 + 0.133i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.566 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5049873551\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5049873551\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
good | 5 | \( 1 + (0.642 - 0.766i)T^{2} \) |
| 7 | \( 1 + (1.85 + 0.673i)T + (0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.657i)T + (0.342 + 0.939i)T^{2} \) |
| 17 | \( 1 + (-0.342 + 0.939i)T^{2} \) |
| 19 | \( 1 + (-0.168 + 1.92i)T + (-0.984 - 0.173i)T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + (1.28 + 1.28i)T + iT^{2} \) |
| 41 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (0.123 - 0.123i)T - iT^{2} \) |
| 47 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.642 - 0.766i)T^{2} \) |
| 61 | \( 1 + (0.811 - 1.15i)T + (-0.342 - 0.939i)T^{2} \) |
| 67 | \( 1 + (0.524 - 1.43i)T + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 73 | \( 1 + 1.53iT - T^{2} \) |
| 79 | \( 1 + (-1.80 + 0.842i)T + (0.642 - 0.766i)T^{2} \) |
| 83 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 89 | \( 1 + (0.642 + 0.766i)T^{2} \) |
| 97 | \( 1 + (0.168 + 0.0451i)T + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.392260685012751961610570287090, −9.170337697250141729081520463292, −7.55325936776091187030723233446, −7.23561438585920548687584866610, −6.29262214612466102001980359763, −5.44811283756963351702039574318, −4.28573659152661014041654191763, −3.32841181680964320142224985181, −2.51177254433627628489867784321, −0.39427750236906976356026398143,
2.00522407425586386852916414988, 3.12801713952591114319004930112, 3.89485036267912577302139568733, 5.20577793816332326247710498479, 6.10504159341156488054598197598, 6.66089459558415994355222556242, 7.61995113886796291216933857644, 8.598937055363214273633810543706, 9.549481777389093294177599514786, 9.812068523232340843838557427239