L(s) = 1 | + (−1.68 + 0.613i)5-s + (2.82 − 1.02i)7-s + (1.22 + 2.12i)11-s + (−0.123 + 0.698i)13-s + (0.266 + 1.51i)17-s + (−0.404 − 0.339i)19-s + (0.594 − 1.02i)23-s + (−1.36 + 1.14i)25-s + (0.173 + 0.300i)29-s + 7.53·31-s + (−4.13 + 3.46i)35-s + (−0.665 + 6.04i)37-s + (1.20 − 6.86i)41-s + 3.76·43-s + (−1.56 + 2.70i)47-s + ⋯ |
L(s) = 1 | + (−0.753 + 0.274i)5-s + (1.06 − 0.388i)7-s + (0.369 + 0.640i)11-s + (−0.0341 + 0.193i)13-s + (0.0647 + 0.366i)17-s + (−0.0928 − 0.0779i)19-s + (0.123 − 0.214i)23-s + (−0.273 + 0.229i)25-s + (0.0322 + 0.0558i)29-s + 1.35·31-s + (−0.698 + 0.586i)35-s + (−0.109 + 0.993i)37-s + (0.188 − 1.07i)41-s + 0.574·43-s + (−0.227 + 0.394i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.641i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.641i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.605277346\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.605277346\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (0.665 - 6.04i)T \) |
good | 5 | \( 1 + (1.68 - 0.613i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-2.82 + 1.02i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (-1.22 - 2.12i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.123 - 0.698i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (-0.266 - 1.51i)T + (-15.9 + 5.81i)T^{2} \) |
| 19 | \( 1 + (0.404 + 0.339i)T + (3.29 + 18.7i)T^{2} \) |
| 23 | \( 1 + (-0.594 + 1.02i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.300i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.53T + 31T^{2} \) |
| 41 | \( 1 + (-1.20 + 6.86i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 - 3.76T + 43T^{2} \) |
| 47 | \( 1 + (1.56 - 2.70i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-9.80 - 3.56i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (-10.8 - 3.93i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (1.34 - 7.64i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-5.01 + 1.82i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-4.62 - 3.87i)T + (12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 - 6.37T + 73T^{2} \) |
| 79 | \( 1 + (11.3 - 4.11i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-1.94 - 11.0i)T + (-77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (-2.57 - 0.936i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (1.94 - 3.36i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.809231632901829585106622961408, −8.722126161170743724457022697607, −8.058437688061811963468128999898, −7.33007259941779734727892096154, −6.63504491415184805045867170589, −5.41324050118075165348727948717, −4.42773446136772462027903778889, −3.88370685571508670339985386621, −2.48504313888771088549759841384, −1.19939663238097430398270335919,
0.802461304236057234486921536106, 2.22751085010694853391328842050, 3.50201475358799647306637396638, 4.44186552524568338678592133432, 5.23290456354233684500240285057, 6.16378982712918265071084571479, 7.23909230988294545282934577657, 8.155462460394806324484342901322, 8.444667224781143684999848407161, 9.432198842815734896876883951978