Properties

Label 1332.2.bt.b
Level 13321332
Weight 22
Character orbit 1332.bt
Analytic conductor 10.63610.636
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,2,Mod(145,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.145");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1332=223237 1332 = 2^{2} \cdot 3^{2} \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1332.bt (of order 99, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.636073549210.6360735492
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ9)\Q(\zeta_{9})
Coefficient field: Q[x]/(x12+)\mathbb{Q}[x]/(x^{12} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12+9x1014x9+69x872x7+151x678x5+180x466x3+117x2+27x+9 x^{12} + 9x^{10} - 14x^{9} + 69x^{8} - 72x^{7} + 151x^{6} - 78x^{5} + 180x^{4} - 66x^{3} + 117x^{2} + 27x + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 444)
Sato-Tate group: SU(2)[C9]\mathrm{SU}(2)[C_{9}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β11+β91)q5+(β11β10+β2)q7+(β11β10+2β1)q11+(β11+2β10+β9+1)q13++(3β114β10+6)q97+O(q100) q + ( - \beta_{11} + \beta_{9} - 1) q^{5} + (\beta_{11} - \beta_{10} + \cdots - \beta_{2}) q^{7} + ( - \beta_{11} - \beta_{10} + \cdots - 2 \beta_1) q^{11} + (\beta_{11} + 2 \beta_{10} + \beta_{9} + \cdots - 1) q^{13}+ \cdots + ( - 3 \beta_{11} - 4 \beta_{10} + \cdots - 6) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q3q56q116q1312q17+12q1915q25+3q2936q35+27q3718q4112q439q4718q49+36q533q55+6q599q6130q65+24q97+O(q100) 12 q - 3 q^{5} - 6 q^{11} - 6 q^{13} - 12 q^{17} + 12 q^{19} - 15 q^{25} + 3 q^{29} - 36 q^{35} + 27 q^{37} - 18 q^{41} - 12 q^{43} - 9 q^{47} - 18 q^{49} + 36 q^{53} - 3 q^{55} + 6 q^{59} - 9 q^{61} - 30 q^{65}+ \cdots - 24 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12+9x1014x9+69x872x7+151x678x5+180x466x3+117x2+27x+9 x^{12} + 9x^{10} - 14x^{9} + 69x^{8} - 72x^{7} + 151x^{6} - 78x^{5} + 180x^{4} - 66x^{3} + 117x^{2} + 27x + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (22300ν1139972ν10207135ν916552ν81068399ν7+1430838)/5269059 ( - 22300 \nu^{11} - 39972 \nu^{10} - 207135 \nu^{9} - 16552 \nu^{8} - 1068399 \nu^{7} + \cdots - 1430838 ) / 5269059 Copy content Toggle raw display
β3\beta_{3}== (54202ν1156620ν10362478ν9+660840ν81457487ν7++6547776)/5269059 ( - 54202 \nu^{11} - 56620 \nu^{10} - 362478 \nu^{9} + 660840 \nu^{8} - 1457487 \nu^{7} + \cdots + 6547776 ) / 5269059 Copy content Toggle raw display
β4\beta_{4}== (71196ν11245497ν10+494337ν93002842ν8+7566829ν7++2219844)/5269059 ( 71196 \nu^{11} - 245497 \nu^{10} + 494337 \nu^{9} - 3002842 \nu^{8} + 7566829 \nu^{7} + \cdots + 2219844 ) / 5269059 Copy content Toggle raw display
β5\beta_{5}== (74027ν11+333687ν10+850507ν9+1595916ν8+1206871ν7++966006)/5269059 ( 74027 \nu^{11} + 333687 \nu^{10} + 850507 \nu^{9} + 1595916 \nu^{8} + 1206871 \nu^{7} + \cdots + 966006 ) / 5269059 Copy content Toggle raw display
β6\beta_{6}== (107334ν11+74027ν10632319ν9+2353183ν85810130ν7+3471528)/5269059 ( - 107334 \nu^{11} + 74027 \nu^{10} - 632319 \nu^{9} + 2353183 \nu^{8} - 5810130 \nu^{7} + \cdots - 3471528 ) / 5269059 Copy content Toggle raw display
β7\beta_{7}== (125253ν11151332ν10+682852ν93373952ν8+7397665ν7+2772270)/5269059 ( 125253 \nu^{11} - 151332 \nu^{10} + 682852 \nu^{9} - 3373952 \nu^{8} + 7397665 \nu^{7} + \cdots - 2772270 ) / 5269059 Copy content Toggle raw display
β8\beta_{8}== (144076ν11+324620ν10+1890631ν9+1006066ν8+9884477ν7++1707330)/5269059 ( 144076 \nu^{11} + 324620 \nu^{10} + 1890631 \nu^{9} + 1006066 \nu^{8} + 9884477 \nu^{7} + \cdots + 1707330 ) / 5269059 Copy content Toggle raw display
β9\beta_{9}== (158982ν11+22300ν101390866ν9+2432883ν810953206ν7++1548036)/5269059 ( - 158982 \nu^{11} + 22300 \nu^{10} - 1390866 \nu^{9} + 2432883 \nu^{8} - 10953206 \nu^{7} + \cdots + 1548036 ) / 5269059 Copy content Toggle raw display
β10\beta_{10}== (200696ν11199280ν101988619ν9+1276385ν812069988ν7+1219512)/5269059 ( - 200696 \nu^{11} - 199280 \nu^{10} - 1988619 \nu^{9} + 1276385 \nu^{8} - 12069988 \nu^{7} + \cdots - 1219512 ) / 5269059 Copy content Toggle raw display
β11\beta_{11}== (352831ν11+72400ν10+2638417ν95007488ν8+18310912ν7++4112292)/5269059 ( 352831 \nu^{11} + 72400 \nu^{10} + 2638417 \nu^{9} - 5007488 \nu^{8} + 18310912 \nu^{7} + \cdots + 4112292 ) / 5269059 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β11β10+2β9+β6β5+β32 \beta_{11} - \beta_{10} + 2\beta_{9} + \beta_{6} - \beta_{5} + \beta_{3} - 2 Copy content Toggle raw display
ν3\nu^{3}== β11+5β10+2β8+β7+3β6+2β5+3β42β3++2 \beta_{11} + 5 \beta_{10} + 2 \beta_{8} + \beta_{7} + 3 \beta_{6} + 2 \beta_{5} + 3 \beta_{4} - 2 \beta_{3} + \cdots + 2 Copy content Toggle raw display
ν4\nu^{4}== 9β1110β1011β97β89β719β6++5β1 - 9 \beta_{11} - 10 \beta_{10} - 11 \beta_{9} - 7 \beta_{8} - 9 \beta_{7} - 19 \beta_{6} + \cdots + 5 \beta_1 Copy content Toggle raw display
ν5\nu^{5}== 14β1131β10+26β910β8+10β7+25β614β5+26 14 \beta_{11} - 31 \beta_{10} + 26 \beta_{9} - 10 \beta_{8} + 10 \beta_{7} + 25 \beta_{6} - 14 \beta_{5} + \cdots - 26 Copy content Toggle raw display
ν6\nu^{6}== 25β11+182β10+83β8+58β7+90β6+83β5+99β4++92 25 \beta_{11} + 182 \beta_{10} + 83 \beta_{8} + 58 \beta_{7} + 90 \beta_{6} + 83 \beta_{5} + 99 \beta_{4} + \cdots + 92 Copy content Toggle raw display
ν7\nu^{7}== 246β11262β10269β9154β8246β7559β6++233β1 - 246 \beta_{11} - 262 \beta_{10} - 269 \beta_{9} - 154 \beta_{8} - 246 \beta_{7} - 559 \beta_{6} + \cdots + 233 \beta_1 Copy content Toggle raw display
ν8\nu^{8}== 530β11895β10+866β9262β8+262β7+868β6+866 530 \beta_{11} - 895 \beta_{10} + 866 \beta_{9} - 262 \beta_{8} + 262 \beta_{7} + 868 \beta_{6} + \cdots - 866 Copy content Toggle raw display
ν9\nu^{9}== 868β11+5477β10+2432β8+1564β7+2859β6+2432β5++2660 868 \beta_{11} + 5477 \beta_{10} + 2432 \beta_{8} + 1564 \beta_{7} + 2859 \beta_{6} + 2432 \beta_{5} + \cdots + 2660 Copy content Toggle raw display
ν10\nu^{10}== 7665β118347β108372β95047β87665β7++6656β1 - 7665 \beta_{11} - 8347 \beta_{10} - 8372 \beta_{9} - 5047 \beta_{8} - 7665 \beta_{7} + \cdots + 6656 \beta_1 Copy content Toggle raw display
ν11\nu^{11}== 15458β1127715β10+26024β98347β8+8347β7+25741β6+26024 15458 \beta_{11} - 27715 \beta_{10} + 26024 \beta_{9} - 8347 \beta_{8} + 8347 \beta_{7} + 25741 \beta_{6} + \cdots - 26024 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1332Z)×\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times.

nn 667667 10371037 12971297
χ(n)\chi(n) 11 11 β4\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
145.1
−0.130479 + 0.225997i
0.896524 1.55282i
0.735449 1.27384i
−0.561801 + 0.973068i
0.621301 + 1.07612i
−1.56099 2.70372i
−0.130479 0.225997i
0.896524 + 1.55282i
0.735449 + 1.27384i
−0.561801 0.973068i
0.621301 1.07612i
−1.56099 + 2.70372i
0 0 0 −1.68491 0.613258i 0 2.82666 + 1.02882i 0 0 0
145.2 0 0 0 0.245221 + 0.0892531i 0 −2.06061 0.750002i 0 0 0
181.1 0 0 0 −0.860729 + 0.722237i 0 1.42570 1.19631i 0 0 0
181.2 0 0 0 1.12677 0.945475i 0 −1.25205 + 1.05060i 0 0 0
793.1 0 0 0 −0.542127 + 3.07456i 0 −0.803091 + 4.55455i 0 0 0
793.2 0 0 0 0.215775 1.22372i 0 −0.136602 + 0.774709i 0 0 0
937.1 0 0 0 −1.68491 + 0.613258i 0 2.82666 1.02882i 0 0 0
937.2 0 0 0 0.245221 0.0892531i 0 −2.06061 + 0.750002i 0 0 0
1045.1 0 0 0 −0.860729 0.722237i 0 1.42570 + 1.19631i 0 0 0
1045.2 0 0 0 1.12677 + 0.945475i 0 −1.25205 1.05060i 0 0 0
1117.1 0 0 0 −0.542127 3.07456i 0 −0.803091 4.55455i 0 0 0
1117.2 0 0 0 0.215775 + 1.22372i 0 −0.136602 0.774709i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 145.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.f even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.2.bt.b 12
3.b odd 2 1 444.2.u.a 12
37.f even 9 1 inner 1332.2.bt.b 12
111.p odd 18 1 444.2.u.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
444.2.u.a 12 3.b odd 2 1
444.2.u.a 12 111.p odd 18 1
1332.2.bt.b 12 1.a even 1 1 trivial
1332.2.bt.b 12 37.f even 9 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T512+3T511+12T510+20T59+9T58+21T57+70T56++9 T_{5}^{12} + 3 T_{5}^{11} + 12 T_{5}^{10} + 20 T_{5}^{9} + 9 T_{5}^{8} + 21 T_{5}^{7} + 70 T_{5}^{6} + \cdots + 9 acting on S2new(1332,[χ])S_{2}^{\mathrm{new}}(1332, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12+3T11++9 T^{12} + 3 T^{11} + \cdots + 9 Copy content Toggle raw display
77 T12+9T10++5329 T^{12} + 9 T^{10} + \cdots + 5329 Copy content Toggle raw display
1111 T12+6T11++110889 T^{12} + 6 T^{11} + \cdots + 110889 Copy content Toggle raw display
1313 T12+6T11++81 T^{12} + 6 T^{11} + \cdots + 81 Copy content Toggle raw display
1717 T12+12T11++59049 T^{12} + 12 T^{11} + \cdots + 59049 Copy content Toggle raw display
1919 T1212T11++494209 T^{12} - 12 T^{11} + \cdots + 494209 Copy content Toggle raw display
2323 T12+63T10++239121 T^{12} + 63 T^{10} + \cdots + 239121 Copy content Toggle raw display
2929 T123T11++106929 T^{12} - 3 T^{11} + \cdots + 106929 Copy content Toggle raw display
3131 (T642T4++109)2 (T^{6} - 42 T^{4} + \cdots + 109)^{2} Copy content Toggle raw display
3737 T12++2565726409 T^{12} + \cdots + 2565726409 Copy content Toggle raw display
4141 T12+18T11++2152089 T^{12} + 18 T^{11} + \cdots + 2152089 Copy content Toggle raw display
4343 (T6+6T5++3743)2 (T^{6} + 6 T^{5} + \cdots + 3743)^{2} Copy content Toggle raw display
4747 T12++231983361 T^{12} + \cdots + 231983361 Copy content Toggle raw display
5353 T1236T11++6765201 T^{12} - 36 T^{11} + \cdots + 6765201 Copy content Toggle raw display
5959 T12++184932801 T^{12} + \cdots + 184932801 Copy content Toggle raw display
6161 T12++417425761 T^{12} + \cdots + 417425761 Copy content Toggle raw display
6767 T12++143736121 T^{12} + \cdots + 143736121 Copy content Toggle raw display
7171 T12++231331178961 T^{12} + \cdots + 231331178961 Copy content Toggle raw display
7373 (T6+21T5++258371)2 (T^{6} + 21 T^{5} + \cdots + 258371)^{2} Copy content Toggle raw display
7979 T12++336020786929 T^{12} + \cdots + 336020786929 Copy content Toggle raw display
8383 T12++1659992049 T^{12} + \cdots + 1659992049 Copy content Toggle raw display
8989 T12++8131891329 T^{12} + \cdots + 8131891329 Copy content Toggle raw display
9797 T12++159693769 T^{12} + \cdots + 159693769 Copy content Toggle raw display
show more
show less