gp: [N,k,chi] = [1332,2,Mod(145,1332)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1332, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1332.145");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 + 9 x 10 − 14 x 9 + 69 x 8 − 72 x 7 + 151 x 6 − 78 x 5 + 180 x 4 − 66 x 3 + 117 x 2 + 27 x + 9 x^{12} + 9x^{10} - 14x^{9} + 69x^{8} - 72x^{7} + 151x^{6} - 78x^{5} + 180x^{4} - 66x^{3} + 117x^{2} + 27x + 9 x 1 2 + 9 x 1 0 − 1 4 x 9 + 6 9 x 8 − 7 2 x 7 + 1 5 1 x 6 − 7 8 x 5 + 1 8 0 x 4 − 6 6 x 3 + 1 1 7 x 2 + 2 7 x + 9
x^12 + 9*x^10 - 14*x^9 + 69*x^8 - 72*x^7 + 151*x^6 - 78*x^5 + 180*x^4 - 66*x^3 + 117*x^2 + 27*x + 9
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − 22300 ν 11 − 39972 ν 10 − 207135 ν 9 − 16552 ν 8 − 1068399 ν 7 + ⋯ − 1430838 ) / 5269059 ( - 22300 \nu^{11} - 39972 \nu^{10} - 207135 \nu^{9} - 16552 \nu^{8} - 1068399 \nu^{7} + \cdots - 1430838 ) / 5269059 ( − 2 2 3 0 0 ν 1 1 − 3 9 9 7 2 ν 1 0 − 2 0 7 1 3 5 ν 9 − 1 6 5 5 2 ν 8 − 1 0 6 8 3 9 9 ν 7 + ⋯ − 1 4 3 0 8 3 8 ) / 5 2 6 9 0 5 9
(-22300*v^11 - 39972*v^10 - 207135*v^9 - 16552*v^8 - 1068399*v^7 - 831177*v^6 - 1576951*v^5 - 1652415*v^4 - 5671629*v^3 - 2275761*v^2 - 5840550*v - 1430838) / 5269059
β 3 \beta_{3} β 3 = = =
( − 54202 ν 11 − 56620 ν 10 − 362478 ν 9 + 660840 ν 8 − 1457487 ν 7 + ⋯ + 6547776 ) / 5269059 ( - 54202 \nu^{11} - 56620 \nu^{10} - 362478 \nu^{9} + 660840 \nu^{8} - 1457487 \nu^{7} + \cdots + 6547776 ) / 5269059 ( − 5 4 2 0 2 ν 1 1 − 5 6 6 2 0 ν 1 0 − 3 6 2 4 7 8 ν 9 + 6 6 0 8 4 0 ν 8 − 1 4 5 7 4 8 7 ν 7 + ⋯ + 6 5 4 7 7 7 6 ) / 5 2 6 9 0 5 9
(-54202*v^11 - 56620*v^10 - 362478*v^9 + 660840*v^8 - 1457487*v^7 + 1717033*v^6 + 987268*v^5 + 6454315*v^4 + 2293745*v^3 + 8753631*v^2 + 10148844*v + 6547776) / 5269059
β 4 \beta_{4} β 4 = = =
( 71196 ν 11 − 245497 ν 10 + 494337 ν 9 − 3002842 ν 8 + 7566829 ν 7 + ⋯ + 2219844 ) / 5269059 ( 71196 \nu^{11} - 245497 \nu^{10} + 494337 \nu^{9} - 3002842 \nu^{8} + 7566829 \nu^{7} + \cdots + 2219844 ) / 5269059 ( 7 1 1 9 6 ν 1 1 − 2 4 5 4 9 7 ν 1 0 + 4 9 4 3 3 7 ν 9 − 3 0 0 2 8 4 2 ν 8 + 7 5 6 6 8 2 9 ν 7 + ⋯ + 2 2 1 9 8 4 4 ) / 5 2 6 9 0 5 9
(71196*v^11 - 245497*v^10 + 494337*v^9 - 3002842*v^8 + 7566829*v^7 - 17626894*v^6 + 20172466*v^5 - 22092027*v^4 + 20840902*v^3 - 19831914*v^2 + 18268758*v + 2219844) / 5269059
β 5 \beta_{5} β 5 = = =
( 74027 ν 11 + 333687 ν 10 + 850507 ν 9 + 1595916 ν 8 + 1206871 ν 7 + ⋯ + 966006 ) / 5269059 ( 74027 \nu^{11} + 333687 \nu^{10} + 850507 \nu^{9} + 1595916 \nu^{8} + 1206871 \nu^{7} + \cdots + 966006 ) / 5269059 ( 7 4 0 2 7 ν 1 1 + 3 3 3 6 8 7 ν 1 0 + 8 5 0 5 0 7 ν 9 + 1 5 9 5 9 1 6 ν 8 + 1 2 0 6 8 7 1 ν 7 + ⋯ + 9 6 6 0 0 6 ) / 5 2 6 9 0 5 9
(74027*v^11 + 333687*v^10 + 850507*v^9 + 1595916*v^8 + 1206871*v^7 + 11479793*v^6 - 1337096*v^5 + 18140675*v^4 - 816147*v^3 + 22022940*v^2 - 573510*v + 966006) / 5269059
β 6 \beta_{6} β 6 = = =
( − 107334 ν 11 + 74027 ν 10 − 632319 ν 9 + 2353183 ν 8 − 5810130 ν 7 + ⋯ − 3471528 ) / 5269059 ( - 107334 \nu^{11} + 74027 \nu^{10} - 632319 \nu^{9} + 2353183 \nu^{8} - 5810130 \nu^{7} + \cdots - 3471528 ) / 5269059 ( − 1 0 7 3 3 4 ν 1 1 + 7 4 0 2 7 ν 1 0 − 6 3 2 3 1 9 ν 9 + 2 3 5 3 1 8 3 ν 8 − 5 8 1 0 1 3 0 ν 7 + ⋯ − 3 4 7 1 5 2 8 ) / 5 2 6 9 0 5 9
(-107334*v^11 + 74027*v^10 - 632319*v^9 + 2353183*v^8 - 5810130*v^7 + 8934919*v^6 - 4727641*v^5 + 7034956*v^4 - 1179445*v^3 + 6267897*v^2 + 9464862*v - 3471528) / 5269059
β 7 \beta_{7} β 7 = = =
( 125253 ν 11 − 151332 ν 10 + 682852 ν 9 − 3373952 ν 8 + 7397665 ν 7 + ⋯ − 2772270 ) / 5269059 ( 125253 \nu^{11} - 151332 \nu^{10} + 682852 \nu^{9} - 3373952 \nu^{8} + 7397665 \nu^{7} + \cdots - 2772270 ) / 5269059 ( 1 2 5 2 5 3 ν 1 1 − 1 5 1 3 3 2 ν 1 0 + 6 8 2 8 5 2 ν 9 − 3 3 7 3 9 5 2 ν 8 + 7 3 9 7 6 6 5 ν 7 + ⋯ − 2 7 7 2 2 7 0 ) / 5 2 6 9 0 5 9
(125253*v^11 - 151332*v^10 + 682852*v^9 - 3373952*v^8 + 7397665*v^7 - 14297782*v^6 + 8748272*v^5 - 18580135*v^4 + 10210395*v^3 - 23278908*v^2 - 3625770*v - 2772270) / 5269059
β 8 \beta_{8} β 8 = = =
( 144076 ν 11 + 324620 ν 10 + 1890631 ν 9 + 1006066 ν 8 + 9884477 ν 7 + ⋯ + 1707330 ) / 5269059 ( 144076 \nu^{11} + 324620 \nu^{10} + 1890631 \nu^{9} + 1006066 \nu^{8} + 9884477 \nu^{7} + \cdots + 1707330 ) / 5269059 ( 1 4 4 0 7 6 ν 1 1 + 3 2 4 6 2 0 ν 1 0 + 1 8 9 0 6 3 1 ν 9 + 1 0 0 6 0 6 6 ν 8 + 9 8 8 4 4 7 7 ν 7 + ⋯ + 1 7 0 7 3 3 0 ) / 5 2 6 9 0 5 9
(144076*v^11 + 324620*v^10 + 1890631*v^9 + 1006066*v^8 + 9884477*v^7 + 3326194*v^6 + 29713666*v^5 + 3806993*v^4 + 40862119*v^3 + 12638790*v^2 + 30236694*v + 1707330) / 5269059
β 9 \beta_{9} β 9 = = =
( − 158982 ν 11 + 22300 ν 10 − 1390866 ν 9 + 2432883 ν 8 − 10953206 ν 7 + ⋯ + 1548036 ) / 5269059 ( - 158982 \nu^{11} + 22300 \nu^{10} - 1390866 \nu^{9} + 2432883 \nu^{8} - 10953206 \nu^{7} + \cdots + 1548036 ) / 5269059 ( − 1 5 8 9 8 2 ν 1 1 + 2 2 3 0 0 ν 1 0 − 1 3 9 0 8 6 6 ν 9 + 2 4 3 2 8 8 3 ν 8 − 1 0 9 5 3 2 0 6 ν 7 + ⋯ + 1 5 4 8 0 3 6 ) / 5 2 6 9 0 5 9
(-158982*v^11 + 22300*v^10 - 1390866*v^9 + 2432883*v^8 - 10953206*v^7 + 12515103*v^6 - 23175105*v^5 + 13977547*v^4 - 26964345*v^3 + 16164441*v^2 - 16325133*v + 1548036) / 5269059
β 10 \beta_{10} β 1 0 = = =
( − 200696 ν 11 − 199280 ν 10 − 1988619 ν 9 + 1276385 ν 8 − 12069988 ν 7 + ⋯ − 1219512 ) / 5269059 ( - 200696 \nu^{11} - 199280 \nu^{10} - 1988619 \nu^{9} + 1276385 \nu^{8} - 12069988 \nu^{7} + \cdots - 1219512 ) / 5269059 ( − 2 0 0 6 9 6 ν 1 1 − 1 9 9 2 8 0 ν 1 0 − 1 9 8 8 6 1 9 ν 9 + 1 2 7 6 3 8 5 ν 8 − 1 2 0 6 9 9 8 8 ν 7 + ⋯ − 1 2 1 9 5 1 2 ) / 5 2 6 9 0 5 9
(-200696*v^11 - 199280*v^10 - 1988619*v^9 + 1276385*v^8 - 12069988*v^7 + 5845576*v^6 - 27487107*v^5 + 8243112*v^4 - 35685820*v^3 + 3851688*v^2 - 22225464*v - 1219512) / 5269059
β 11 \beta_{11} β 1 1 = = =
( 352831 ν 11 + 72400 ν 10 + 2638417 ν 9 − 5007488 ν 8 + 18310912 ν 7 + ⋯ + 4112292 ) / 5269059 ( 352831 \nu^{11} + 72400 \nu^{10} + 2638417 \nu^{9} - 5007488 \nu^{8} + 18310912 \nu^{7} + \cdots + 4112292 ) / 5269059 ( 3 5 2 8 3 1 ν 1 1 + 7 2 4 0 0 ν 1 0 + 2 6 3 8 4 1 7 ν 9 − 5 0 0 7 4 8 8 ν 8 + 1 8 3 1 0 9 1 2 ν 7 + ⋯ + 4 1 1 2 2 9 2 ) / 5 2 6 9 0 5 9
(352831*v^11 + 72400*v^10 + 2638417*v^9 - 5007488*v^8 + 18310912*v^7 - 18356789*v^6 + 21266380*v^5 - 15060578*v^4 + 16312423*v^3 - 16206723*v^2 - 9762414*v + 4112292) / 5269059
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 11 − β 10 + 2 β 9 + β 6 − β 5 + β 3 − 2 \beta_{11} - \beta_{10} + 2\beta_{9} + \beta_{6} - \beta_{5} + \beta_{3} - 2 β 1 1 − β 1 0 + 2 β 9 + β 6 − β 5 + β 3 − 2
b11 - b10 + 2*b9 + b6 - b5 + b3 - 2
ν 3 \nu^{3} ν 3 = = =
β 11 + 5 β 10 + 2 β 8 + β 7 + 3 β 6 + 2 β 5 + 3 β 4 − 2 β 3 + ⋯ + 2 \beta_{11} + 5 \beta_{10} + 2 \beta_{8} + \beta_{7} + 3 \beta_{6} + 2 \beta_{5} + 3 \beta_{4} - 2 \beta_{3} + \cdots + 2 β 1 1 + 5 β 1 0 + 2 β 8 + β 7 + 3 β 6 + 2 β 5 + 3 β 4 − 2 β 3 + ⋯ + 2
b11 + 5*b10 + 2*b8 + b7 + 3*b6 + 2*b5 + 3*b4 - 2*b3 - 4*b2 - 4*b1 + 2
ν 4 \nu^{4} ν 4 = = =
− 9 β 11 − 10 β 10 − 11 β 9 − 7 β 8 − 9 β 7 − 19 β 6 + ⋯ + 5 β 1 - 9 \beta_{11} - 10 \beta_{10} - 11 \beta_{9} - 7 \beta_{8} - 9 \beta_{7} - 19 \beta_{6} + \cdots + 5 \beta_1 − 9 β 1 1 − 1 0 β 1 0 − 1 1 β 9 − 7 β 8 − 9 β 7 − 1 9 β 6 + ⋯ + 5 β 1
-9*b11 - 10*b10 - 11*b9 - 7*b8 - 9*b7 - 19*b6 - 2*b5 - 7*b4 - 3*b3 + 5*b1
ν 5 \nu^{5} ν 5 = = =
14 β 11 − 31 β 10 + 26 β 9 − 10 β 8 + 10 β 7 + 25 β 6 − 14 β 5 + ⋯ − 26 14 \beta_{11} - 31 \beta_{10} + 26 \beta_{9} - 10 \beta_{8} + 10 \beta_{7} + 25 \beta_{6} - 14 \beta_{5} + \cdots - 26 1 4 β 1 1 − 3 1 β 1 0 + 2 6 β 9 − 1 0 β 8 + 1 0 β 7 + 2 5 β 6 − 1 4 β 5 + ⋯ − 2 6
14*b11 - 31*b10 + 26*b9 - 10*b8 + 10*b7 + 25*b6 - 14*b5 - 11*b4 + 32*b3 + 27*b2 - 26
ν 6 \nu^{6} ν 6 = = =
25 β 11 + 182 β 10 + 83 β 8 + 58 β 7 + 90 β 6 + 83 β 5 + 99 β 4 + ⋯ + 92 25 \beta_{11} + 182 \beta_{10} + 83 \beta_{8} + 58 \beta_{7} + 90 \beta_{6} + 83 \beta_{5} + 99 \beta_{4} + \cdots + 92 2 5 β 1 1 + 1 8 2 β 1 0 + 8 3 β 8 + 5 8 β 7 + 9 0 β 6 + 8 3 β 5 + 9 9 β 4 + ⋯ + 9 2
25*b11 + 182*b10 + 83*b8 + 58*b7 + 90*b6 + 83*b5 + 99*b4 - 65*b3 - 64*b2 - 64*b1 + 92
ν 7 \nu^{7} ν 7 = = =
− 246 β 11 − 262 β 10 − 269 β 9 − 154 β 8 − 246 β 7 − 559 β 6 + ⋯ + 233 β 1 - 246 \beta_{11} - 262 \beta_{10} - 269 \beta_{9} - 154 \beta_{8} - 246 \beta_{7} - 559 \beta_{6} + \cdots + 233 \beta_1 − 2 4 6 β 1 1 − 2 6 2 β 1 0 − 2 6 9 β 9 − 1 5 4 β 8 − 2 4 6 β 7 − 5 5 9 β 6 + ⋯ + 2 3 3 β 1
-246*b11 - 262*b10 - 269*b9 - 154*b8 - 246*b7 - 559*b6 - 92*b5 - 205*b4 - 108*b3 + 233*b1
ν 8 \nu^{8} ν 8 = = =
530 β 11 − 895 β 10 + 866 β 9 − 262 β 8 + 262 β 7 + 868 β 6 + ⋯ − 866 530 \beta_{11} - 895 \beta_{10} + 866 \beta_{9} - 262 \beta_{8} + 262 \beta_{7} + 868 \beta_{6} + \cdots - 866 5 3 0 β 1 1 − 8 9 5 β 1 0 + 8 6 6 β 9 − 2 6 2 β 8 + 2 6 2 β 7 + 8 6 8 β 6 + ⋯ − 8 6 6
530*b11 - 895*b10 + 866*b9 - 262*b8 + 262*b7 + 868*b6 - 530*b5 - 338*b4 + 971*b3 + 669*b2 - 866
ν 9 \nu^{9} ν 9 = = =
868 β 11 + 5477 β 10 + 2432 β 8 + 1564 β 7 + 2859 β 6 + 2432 β 5 + ⋯ + 2660 868 \beta_{11} + 5477 \beta_{10} + 2432 \beta_{8} + 1564 \beta_{7} + 2859 \beta_{6} + 2432 \beta_{5} + \cdots + 2660 8 6 8 β 1 1 + 5 4 7 7 β 1 0 + 2 4 3 2 β 8 + 1 5 6 4 β 7 + 2 8 5 9 β 6 + 2 4 3 2 β 5 + ⋯ + 2 6 6 0
868*b11 + 5477*b10 + 2432*b8 + 1564*b7 + 2859*b6 + 2432*b5 + 3045*b4 - 1991*b3 - 2188*b2 - 2188*b1 + 2660
ν 10 \nu^{10} ν 1 0 = = =
− 7665 β 11 − 8347 β 10 − 8372 β 9 − 5047 β 8 − 7665 β 7 + ⋯ + 6656 β 1 - 7665 \beta_{11} - 8347 \beta_{10} - 8372 \beta_{9} - 5047 \beta_{8} - 7665 \beta_{7} + \cdots + 6656 \beta_1 − 7 6 6 5 β 1 1 − 8 3 4 7 β 1 0 − 8 3 7 2 β 9 − 5 0 4 7 β 8 − 7 6 6 5 β 7 + ⋯ + 6 6 5 6 β 1
-7665*b11 - 8347*b10 - 8372*b9 - 5047*b8 - 7665*b7 - 17149*b6 - 2618*b5 - 6184*b4 - 3300*b3 + 6656*b1
ν 11 \nu^{11} ν 1 1 = = =
15458 β 11 − 27715 β 10 + 26024 β 9 − 8347 β 8 + 8347 β 7 + 25741 β 6 + ⋯ − 26024 15458 \beta_{11} - 27715 \beta_{10} + 26024 \beta_{9} - 8347 \beta_{8} + 8347 \beta_{7} + 25741 \beta_{6} + \cdots - 26024 1 5 4 5 8 β 1 1 − 2 7 7 1 5 β 1 0 + 2 6 0 2 4 β 9 − 8 3 4 7 β 8 + 8 3 4 7 β 7 + 2 5 7 4 1 β 6 + ⋯ − 2 6 0 2 4
15458*b11 - 27715*b10 + 26024*b9 - 8347*b8 + 8347*b7 + 25741*b6 - 15458*b5 - 10283*b4 + 29651*b3 + 21084*b2 - 26024
Character values
We give the values of χ \chi χ on generators for ( Z / 1332 Z ) × \left(\mathbb{Z}/1332\mathbb{Z}\right)^\times ( Z / 1 3 3 2 Z ) × .
n n n
667 667 6 6 7
1037 1037 1 0 3 7
1297 1297 1 2 9 7
χ ( n ) \chi(n) χ ( n )
1 1 1
1 1 1
β 4 \beta_{4} β 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 12 + 3 T 5 11 + 12 T 5 10 + 20 T 5 9 + 9 T 5 8 + 21 T 5 7 + 70 T 5 6 + ⋯ + 9 T_{5}^{12} + 3 T_{5}^{11} + 12 T_{5}^{10} + 20 T_{5}^{9} + 9 T_{5}^{8} + 21 T_{5}^{7} + 70 T_{5}^{6} + \cdots + 9 T 5 1 2 + 3 T 5 1 1 + 1 2 T 5 1 0 + 2 0 T 5 9 + 9 T 5 8 + 2 1 T 5 7 + 7 0 T 5 6 + ⋯ + 9
T5^12 + 3*T5^11 + 12*T5^10 + 20*T5^9 + 9*T5^8 + 21*T5^7 + 70*T5^6 + 51*T5^5 + 90*T5^4 + 102*T5^3 + 63*T5^2 - 54*T5 + 9
acting on S 2 n e w ( 1332 , [ χ ] ) S_{2}^{\mathrm{new}}(1332, [\chi]) S 2 n e w ( 1 3 3 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 T^{12} T 1 2
T^12
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 + 3 T 11 + ⋯ + 9 T^{12} + 3 T^{11} + \cdots + 9 T 1 2 + 3 T 1 1 + ⋯ + 9
T^12 + 3*T^11 + 12*T^10 + 20*T^9 + 9*T^8 + 21*T^7 + 70*T^6 + 51*T^5 + 90*T^4 + 102*T^3 + 63*T^2 - 54*T + 9
7 7 7
T 12 + 9 T 10 + ⋯ + 5329 T^{12} + 9 T^{10} + \cdots + 5329 T 1 2 + 9 T 1 0 + ⋯ + 5 3 2 9
T^12 + 9*T^10 - 38*T^9 - 135*T^8 + 324*T^7 + 1047*T^6 - 594*T^5 - 1620*T^4 + 2410*T^3 + 8397*T^2 + 4599*T + 5329
11 11 1 1
T 12 + 6 T 11 + ⋯ + 110889 T^{12} + 6 T^{11} + \cdots + 110889 T 1 2 + 6 T 1 1 + ⋯ + 1 1 0 8 8 9
T^12 + 6*T^11 + 45*T^10 + 124*T^9 + 651*T^8 + 1548*T^7 + 6373*T^6 + 10872*T^5 + 32328*T^4 + 47934*T^3 + 111213*T^2 + 104895*T + 110889
13 13 1 3
T 12 + 6 T 11 + ⋯ + 81 T^{12} + 6 T^{11} + \cdots + 81 T 1 2 + 6 T 1 1 + ⋯ + 8 1
T^12 + 6*T^11 - 6*T^10 - 46*T^9 + 186*T^8 - 438*T^7 + 1099*T^6 - 1602*T^5 + 846*T^4 - 90*T^3 + 648*T^2 + 324*T + 81
17 17 1 7
T 12 + 12 T 11 + ⋯ + 59049 T^{12} + 12 T^{11} + \cdots + 59049 T 1 2 + 1 2 T 1 1 + ⋯ + 5 9 0 4 9
T^12 + 12*T^11 + 54*T^10 + 24*T^9 + 198*T^8 + 4860*T^7 + 21393*T^6 + 47466*T^5 + 93312*T^4 + 137052*T^3 + 144342*T^2 + 118098*T + 59049
19 19 1 9
T 12 − 12 T 11 + ⋯ + 494209 T^{12} - 12 T^{11} + \cdots + 494209 T 1 2 − 1 2 T 1 1 + ⋯ + 4 9 4 2 0 9
T^12 - 12*T^11 + 15*T^10 + 531*T^9 - 1731*T^8 - 9903*T^7 + 45370*T^6 - 47031*T^5 + 651621*T^4 + 161019*T^3 + 1653267*T^2 + 1324452*T + 494209
23 23 2 3
T 12 + 63 T 10 + ⋯ + 239121 T^{12} + 63 T^{10} + \cdots + 239121 T 1 2 + 6 3 T 1 0 + ⋯ + 2 3 9 1 2 1
T^12 + 63*T^10 + 220*T^9 + 3534*T^8 + 7083*T^7 + 38527*T^6 - 28572*T^5 + 175248*T^4 - 41025*T^3 + 236124*T^2 - 74817*T + 239121
29 29 2 9
T 12 − 3 T 11 + ⋯ + 106929 T^{12} - 3 T^{11} + \cdots + 106929 T 1 2 − 3 T 1 1 + ⋯ + 1 0 6 9 2 9
T^12 - 3*T^11 + 54*T^10 - 109*T^9 + 1953*T^8 - 3969*T^7 + 31927*T^6 - 47175*T^5 + 341613*T^4 - 564654*T^3 + 1082223*T^2 - 361989*T + 106929
31 31 3 1
( T 6 − 42 T 4 + ⋯ + 109 ) 2 (T^{6} - 42 T^{4} + \cdots + 109)^{2} ( T 6 − 4 2 T 4 + ⋯ + 1 0 9 ) 2
(T^6 - 42*T^4 - 115*T^3 + 210*T + 109)^2
37 37 3 7
T 12 + ⋯ + 2565726409 T^{12} + \cdots + 2565726409 T 1 2 + ⋯ + 2 5 6 5 7 2 6 4 0 9
T^12 - 27*T^11 + 372*T^10 - 3645*T^9 + 29445*T^8 - 206334*T^7 + 1305727*T^6 - 7634358*T^5 + 40310205*T^4 - 184630185*T^3 + 697187892*T^2 - 1872286839*T + 2565726409
41 41 4 1
T 12 + 18 T 11 + ⋯ + 2152089 T^{12} + 18 T^{11} + \cdots + 2152089 T 1 2 + 1 8 T 1 1 + ⋯ + 2 1 5 2 0 8 9
T^12 + 18*T^11 + 252*T^10 + 2538*T^9 + 19611*T^8 + 123741*T^7 + 620145*T^6 + 2305179*T^5 + 6006150*T^4 + 10435635*T^3 + 11462958*T^2 + 7288056*T + 2152089
43 43 4 3
( T 6 + 6 T 5 + ⋯ + 3743 ) 2 (T^{6} + 6 T^{5} + \cdots + 3743)^{2} ( T 6 + 6 T 5 + ⋯ + 3 7 4 3 ) 2
(T^6 + 6*T^5 - 69*T^4 - 378*T^3 + 567*T^2 + 3957*T + 3743)^2
47 47 4 7
T 12 + ⋯ + 231983361 T^{12} + \cdots + 231983361 T 1 2 + ⋯ + 2 3 1 9 8 3 3 6 1
T^12 + 9*T^11 + 150*T^10 + 667*T^9 + 9903*T^8 + 43203*T^7 + 395473*T^6 + 1170285*T^5 + 8265771*T^4 + 26510034*T^3 + 101109447*T^2 + 160519509*T + 231983361
53 53 5 3
T 12 − 36 T 11 + ⋯ + 6765201 T^{12} - 36 T^{11} + \cdots + 6765201 T 1 2 − 3 6 T 1 1 + ⋯ + 6 7 6 5 2 0 1
T^12 - 36*T^11 + 693*T^10 - 10468*T^9 + 127674*T^8 - 1112292*T^7 + 6418162*T^6 - 23209065*T^5 + 49234752*T^4 - 59326821*T^3 + 58499091*T^2 - 28254663*T + 6765201
59 59 5 9
T 12 + ⋯ + 184932801 T^{12} + \cdots + 184932801 T 1 2 + ⋯ + 1 8 4 9 3 2 8 0 1
T^12 - 6*T^11 - 243*T^10 + 2328*T^9 + 21357*T^8 - 387558*T^7 + 2303100*T^6 - 7074540*T^5 + 37162800*T^4 + 4603446*T^3 + 238328973*T^2 + 306956628*T + 184932801
61 61 6 1
T 12 + ⋯ + 417425761 T^{12} + \cdots + 417425761 T 1 2 + ⋯ + 4 1 7 4 2 5 7 6 1
T^12 + 9*T^11 + 63*T^10 - 135*T^9 - 1422*T^8 - 19755*T^7 + 79912*T^6 + 221310*T^5 + 1806408*T^4 - 16022880*T^3 + 77966613*T^2 - 273244194*T + 417425761
67 67 6 7
T 12 + ⋯ + 143736121 T^{12} + \cdots + 143736121 T 1 2 + ⋯ + 1 4 3 7 3 6 1 2 1
T^12 - 6*T^11 + 42*T^10 - 452*T^9 + 4536*T^8 - 46800*T^7 + 406344*T^6 - 2643732*T^5 + 14037066*T^4 - 56890640*T^3 + 157277883*T^2 - 234936444*T + 143736121
71 71 7 1
T 12 + ⋯ + 231331178961 T^{12} + \cdots + 231331178961 T 1 2 + ⋯ + 2 3 1 3 3 1 1 7 8 9 6 1
T^12 + 3*T^11 + 234*T^10 - 102*T^9 - 243*T^8 + 4401*T^7 - 907821*T^6 - 4942863*T^5 + 132942951*T^4 + 479737458*T^3 - 4795722936*T^2 - 11051224713*T + 231331178961
73 73 7 3
( T 6 + 21 T 5 + ⋯ + 258371 ) 2 (T^{6} + 21 T^{5} + \cdots + 258371)^{2} ( T 6 + 2 1 T 5 + ⋯ + 2 5 8 3 7 1 ) 2
(T^6 + 21*T^5 + 12*T^4 - 2061*T^3 - 8505*T^2 + 49098*T + 258371)^2
79 79 7 9
T 12 + ⋯ + 336020786929 T^{12} + \cdots + 336020786929 T 1 2 + ⋯ + 3 3 6 0 2 0 7 8 6 9 2 9
T^12 - 12*T^11 + 111*T^10 + 592*T^9 - 30636*T^8 + 180036*T^7 + 2195310*T^6 - 36768177*T^5 + 422343558*T^4 - 1204878611*T^3 - 1642831365*T^2 + 28236451503*T + 336020786929
83 83 8 3
T 12 + ⋯ + 1659992049 T^{12} + \cdots + 1659992049 T 1 2 + ⋯ + 1 6 5 9 9 9 2 0 4 9
T^12 + 9*T^11 + 126*T^10 + 1782*T^9 + 6237*T^8 - 19197*T^7 + 148068*T^6 - 4505949*T^5 - 20095614*T^4 + 154918332*T^3 + 2407709853*T^2 - 3088971288*T + 1659992049
89 89 8 9
T 12 + ⋯ + 8131891329 T^{12} + \cdots + 8131891329 T 1 2 + ⋯ + 8 1 3 1 8 9 1 3 2 9
T^12 - 27*T^11 + 474*T^10 - 5996*T^9 + 52143*T^8 - 342033*T^7 + 2072167*T^6 - 9547179*T^5 + 35255295*T^4 - 209269326*T^3 + 1820306934*T^2 - 6526019313*T + 8131891329
97 97 9 7
T 12 + ⋯ + 159693769 T^{12} + \cdots + 159693769 T 1 2 + ⋯ + 1 5 9 6 9 3 7 6 9
T^12 + 24*T^11 + 555*T^10 + 3708*T^9 + 39132*T^8 - 5385*T^7 + 2148001*T^6 - 610908*T^5 + 26906412*T^4 - 44521047*T^3 + 272256858*T^2 - 209685741*T + 159693769
show more
show less