L(s) = 1 | + (0.245 − 0.0892i)5-s + (−2.06 + 0.750i)7-s + (−2.40 − 4.15i)11-s + (−0.355 + 2.01i)13-s + (−0.213 − 1.21i)17-s + (5.98 + 5.02i)19-s + (−2.71 + 4.70i)23-s + (−3.77 + 3.17i)25-s + (2.10 + 3.64i)29-s − 2.24·31-s + (−0.438 + 0.367i)35-s + (5.68 + 2.15i)37-s + (−1.39 + 7.88i)41-s − 8.68·43-s + (−3.17 + 5.50i)47-s + ⋯ |
L(s) = 1 | + (0.109 − 0.0399i)5-s + (−0.778 + 0.283i)7-s + (−0.723 − 1.25i)11-s + (−0.0987 + 0.559i)13-s + (−0.0518 − 0.294i)17-s + (1.37 + 1.15i)19-s + (−0.566 + 0.982i)23-s + (−0.755 + 0.634i)25-s + (0.390 + 0.676i)29-s − 0.402·31-s + (−0.0740 + 0.0621i)35-s + (0.934 + 0.355i)37-s + (−0.217 + 1.23i)41-s − 1.32·43-s + (−0.463 + 0.802i)47-s + ⋯ |
Λ(s)=(=(1332s/2ΓC(s)L(s)(−0.429−0.903i)Λ(2−s)
Λ(s)=(=(1332s/2ΓC(s+1/2)L(s)(−0.429−0.903i)Λ(1−s)
Degree: |
2 |
Conductor: |
1332
= 22⋅32⋅37
|
Sign: |
−0.429−0.903i
|
Analytic conductor: |
10.6360 |
Root analytic conductor: |
3.26129 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1332(937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1332, ( :1/2), −0.429−0.903i)
|
Particular Values
L(1) |
≈ |
0.7922026912 |
L(21) |
≈ |
0.7922026912 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 37 | 1+(−5.68−2.15i)T |
good | 5 | 1+(−0.245+0.0892i)T+(3.83−3.21i)T2 |
| 7 | 1+(2.06−0.750i)T+(5.36−4.49i)T2 |
| 11 | 1+(2.40+4.15i)T+(−5.5+9.52i)T2 |
| 13 | 1+(0.355−2.01i)T+(−12.2−4.44i)T2 |
| 17 | 1+(0.213+1.21i)T+(−15.9+5.81i)T2 |
| 19 | 1+(−5.98−5.02i)T+(3.29+18.7i)T2 |
| 23 | 1+(2.71−4.70i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−2.10−3.64i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.24T+31T2 |
| 41 | 1+(1.39−7.88i)T+(−38.5−14.0i)T2 |
| 43 | 1+8.68T+43T2 |
| 47 | 1+(3.17−5.50i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−5.14−1.87i)T+(40.6+34.0i)T2 |
| 59 | 1+(13.9+5.06i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.582+3.30i)T+(−57.3−20.8i)T2 |
| 67 | 1+(−1.62+0.590i)T+(51.3−43.0i)T2 |
| 71 | 1+(5.88+4.94i)T+(12.3+69.9i)T2 |
| 73 | 1+8.22T+73T2 |
| 79 | 1+(−10.8+3.94i)T+(60.5−50.7i)T2 |
| 83 | 1+(−1.67−9.47i)T+(−77.9+28.3i)T2 |
| 89 | 1+(−8.92−3.24i)T+(68.1+57.2i)T2 |
| 97 | 1+(−0.412+0.714i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.630723987675784516024403680427, −9.357156263225476926360351754304, −8.129868499802952711503014690317, −7.62597490414699292654624612626, −6.41158057617828638309141933559, −5.79913904651095778360279705648, −4.98804648169354886569691801492, −3.53975307619953557394878145003, −3.01663288763618395481253948157, −1.48054664589223682256735506907,
0.32061277125877477902542403863, 2.14800535826854608563126703548, 3.07768681258751882312028658638, 4.24778027663606379623119927766, 5.11609196370110838189674986520, 6.07776218080445578291510978448, 7.01191691676954372492851133515, 7.60738342602784988577145159030, 8.538733172901150758552483424500, 9.646525584425829443123796524696