L(s) = 1 | + (0.245 − 0.0892i)5-s + (−2.06 + 0.750i)7-s + (−2.40 − 4.15i)11-s + (−0.355 + 2.01i)13-s + (−0.213 − 1.21i)17-s + (5.98 + 5.02i)19-s + (−2.71 + 4.70i)23-s + (−3.77 + 3.17i)25-s + (2.10 + 3.64i)29-s − 2.24·31-s + (−0.438 + 0.367i)35-s + (5.68 + 2.15i)37-s + (−1.39 + 7.88i)41-s − 8.68·43-s + (−3.17 + 5.50i)47-s + ⋯ |
L(s) = 1 | + (0.109 − 0.0399i)5-s + (−0.778 + 0.283i)7-s + (−0.723 − 1.25i)11-s + (−0.0987 + 0.559i)13-s + (−0.0518 − 0.294i)17-s + (1.37 + 1.15i)19-s + (−0.566 + 0.982i)23-s + (−0.755 + 0.634i)25-s + (0.390 + 0.676i)29-s − 0.402·31-s + (−0.0740 + 0.0621i)35-s + (0.934 + 0.355i)37-s + (−0.217 + 1.23i)41-s − 1.32·43-s + (−0.463 + 0.802i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.429 - 0.903i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.429 - 0.903i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7922026912\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7922026912\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (-5.68 - 2.15i)T \) |
good | 5 | \( 1 + (-0.245 + 0.0892i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (2.06 - 0.750i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (2.40 + 4.15i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.355 - 2.01i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (0.213 + 1.21i)T + (-15.9 + 5.81i)T^{2} \) |
| 19 | \( 1 + (-5.98 - 5.02i)T + (3.29 + 18.7i)T^{2} \) |
| 23 | \( 1 + (2.71 - 4.70i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.10 - 3.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.24T + 31T^{2} \) |
| 41 | \( 1 + (1.39 - 7.88i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + 8.68T + 43T^{2} \) |
| 47 | \( 1 + (3.17 - 5.50i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.14 - 1.87i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (13.9 + 5.06i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.582 + 3.30i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (-1.62 + 0.590i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (5.88 + 4.94i)T + (12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 + 8.22T + 73T^{2} \) |
| 79 | \( 1 + (-10.8 + 3.94i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-1.67 - 9.47i)T + (-77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (-8.92 - 3.24i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-0.412 + 0.714i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.630723987675784516024403680427, −9.357156263225476926360351754304, −8.129868499802952711503014690317, −7.62597490414699292654624612626, −6.41158057617828638309141933559, −5.79913904651095778360279705648, −4.98804648169354886569691801492, −3.53975307619953557394878145003, −3.01663288763618395481253948157, −1.48054664589223682256735506907,
0.32061277125877477902542403863, 2.14800535826854608563126703548, 3.07768681258751882312028658638, 4.24778027663606379623119927766, 5.11609196370110838189674986520, 6.07776218080445578291510978448, 7.01191691676954372492851133515, 7.60738342602784988577145159030, 8.538733172901150758552483424500, 9.646525584425829443123796524696