L(s) = 1 | + (−0.5 − 0.866i)5-s + (−0.370 − 0.641i)7-s + 2.91·11-s + (1.54 + 2.68i)13-s + (−3.41 + 5.92i)17-s + (−0.0887 − 0.153i)19-s + 3.43·23-s + (2 − 3.46i)25-s + 4.61·29-s + 2.91·31-s + (−0.370 + 0.641i)35-s + (−2.04 − 5.72i)37-s + (0.322 + 0.558i)41-s − 3.48·43-s + 9.79·47-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.140 − 0.242i)7-s + 0.879·11-s + (0.429 + 0.743i)13-s + (−0.829 + 1.43i)17-s + (−0.0203 − 0.0352i)19-s + 0.716·23-s + (0.400 − 0.692i)25-s + 0.856·29-s + 0.524·31-s + (−0.0626 + 0.108i)35-s + (−0.336 − 0.941i)37-s + (0.0503 + 0.0872i)41-s − 0.531·43-s + 1.42·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0330i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1332 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0330i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.663386520\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.663386520\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 37 | \( 1 + (2.04 + 5.72i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.370 + 0.641i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 2.91T + 11T^{2} \) |
| 13 | \( 1 + (-1.54 - 2.68i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.41 - 5.92i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.0887 + 0.153i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 3.43T + 23T^{2} \) |
| 29 | \( 1 - 4.61T + 29T^{2} \) |
| 31 | \( 1 - 2.91T + 31T^{2} \) |
| 41 | \( 1 + (-0.322 - 0.558i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 3.48T + 43T^{2} \) |
| 47 | \( 1 - 9.79T + 47T^{2} \) |
| 53 | \( 1 + (-3.37 + 5.83i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.72 + 6.45i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.67 - 6.36i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.18 - 8.98i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.72 - 4.72i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 12.3T + 73T^{2} \) |
| 79 | \( 1 + (-6.26 - 10.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (4.18 - 7.24i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.85 + 13.6i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 16.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.527271733253261540086852075822, −8.641695061469422082061427465308, −8.335782609924534116265758374010, −6.86519848418201452132673886181, −6.58847258605684899322622688104, −5.42448333657631227873613331821, −4.24633070922421771709671459338, −3.83074079255355082464635778333, −2.28741177021536923767863479795, −1.01722322989816621173880096772,
0.951339968884921122449917374715, 2.59015646462567796505421170357, 3.39219137399972318580627549458, 4.52907070956754543875066719200, 5.41693757723104305876692832523, 6.53165663207817357160863731683, 7.01579540670176613956687571846, 8.028264658798241861523753950173, 8.944594856691372945859188693723, 9.458883376647994548606176229091