Properties

Label 1332.2.j.e.1009.2
Level $1332$
Weight $2$
Character 1332.1009
Analytic conductor $10.636$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,2,Mod(433,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1332.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6360735492\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.27870912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} + 2x^{3} + 38x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 148)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1009.2
Root \(-1.08870 + 1.88569i\) of defining polynomial
Character \(\chi\) \(=\) 1332.1009
Dual form 1332.2.j.e.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(-0.370556 - 0.641823i) q^{7} +2.91852 q^{11} +(1.54797 + 2.68116i) q^{13} +(-3.41852 + 5.92105i) q^{17} +(-0.0887048 - 0.153641i) q^{19} +3.43630 q^{23} +(2.00000 - 3.46410i) q^{25} +4.61371 q^{29} +2.91852 q^{31} +(-0.370556 + 0.641823i) q^{35} +(-2.04797 - 5.72764i) q^{37} +(0.322590 + 0.558743i) q^{41} -3.48223 q^{43} +9.79112 q^{47} +(3.22538 - 5.58651i) q^{49} +(3.37056 - 5.83798i) q^{53} +(-1.45926 - 2.52751i) q^{55} +(3.72538 - 6.45254i) q^{59} +(3.67741 + 6.36946i) q^{61} +(1.54797 - 2.68116i) q^{65} +(5.18464 + 8.98005i) q^{67} +(2.72538 + 4.72049i) q^{71} +12.3548 q^{73} +(-1.08148 - 1.87317i) q^{77} +(6.26611 + 10.8532i) q^{79} +(-4.18464 + 7.24800i) q^{83} +6.83705 q^{85} +(7.85482 - 13.6049i) q^{89} +(1.14722 - 1.98704i) q^{91} +(-0.0887048 + 0.153641i) q^{95} -16.8056 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - q^{7} - 7 q^{13} - 3 q^{17} + 7 q^{19} + 8 q^{23} + 12 q^{25} - q^{35} + 4 q^{37} + 17 q^{41} - 16 q^{43} + 16 q^{47} - 12 q^{49} + 19 q^{53} - 9 q^{59} + 7 q^{61} - 7 q^{65} - 9 q^{67}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i 0.732294 0.680989i \(-0.238450\pi\)
−0.955901 + 0.293691i \(0.905116\pi\)
\(6\) 0 0
\(7\) −0.370556 0.641823i −0.140057 0.242586i 0.787461 0.616365i \(-0.211395\pi\)
−0.927518 + 0.373779i \(0.878062\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.91852 0.879968 0.439984 0.898006i \(-0.354984\pi\)
0.439984 + 0.898006i \(0.354984\pi\)
\(12\) 0 0
\(13\) 1.54797 + 2.68116i 0.429329 + 0.743619i 0.996814 0.0797647i \(-0.0254169\pi\)
−0.567485 + 0.823384i \(0.692084\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.41852 + 5.92105i −0.829114 + 1.43607i 0.0696210 + 0.997574i \(0.477821\pi\)
−0.898734 + 0.438493i \(0.855512\pi\)
\(18\) 0 0
\(19\) −0.0887048 0.153641i −0.0203503 0.0352477i 0.855671 0.517520i \(-0.173145\pi\)
−0.876021 + 0.482273i \(0.839811\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.43630 0.716517 0.358259 0.933622i \(-0.383371\pi\)
0.358259 + 0.933622i \(0.383371\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.61371 0.856744 0.428372 0.903603i \(-0.359087\pi\)
0.428372 + 0.903603i \(0.359087\pi\)
\(30\) 0 0
\(31\) 2.91852 0.524182 0.262091 0.965043i \(-0.415588\pi\)
0.262091 + 0.965043i \(0.415588\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.370556 + 0.641823i −0.0626355 + 0.108488i
\(36\) 0 0
\(37\) −2.04797 5.72764i −0.336684 0.941618i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.322590 + 0.558743i 0.0503801 + 0.0872610i 0.890116 0.455735i \(-0.150623\pi\)
−0.839736 + 0.542996i \(0.817290\pi\)
\(42\) 0 0
\(43\) −3.48223 −0.531034 −0.265517 0.964106i \(-0.585543\pi\)
−0.265517 + 0.964106i \(0.585543\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.79112 1.42818 0.714091 0.700053i \(-0.246840\pi\)
0.714091 + 0.700053i \(0.246840\pi\)
\(48\) 0 0
\(49\) 3.22538 5.58651i 0.460768 0.798074i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.37056 5.83798i 0.462982 0.801908i −0.536126 0.844138i \(-0.680113\pi\)
0.999108 + 0.0422302i \(0.0134463\pi\)
\(54\) 0 0
\(55\) −1.45926 2.52751i −0.196767 0.340810i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.72538 6.45254i 0.485003 0.840049i −0.514849 0.857281i \(-0.672152\pi\)
0.999852 + 0.0172318i \(0.00548531\pi\)
\(60\) 0 0
\(61\) 3.67741 + 6.36946i 0.470844 + 0.815526i 0.999444 0.0333453i \(-0.0106161\pi\)
−0.528600 + 0.848871i \(0.677283\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.54797 2.68116i 0.192002 0.332556i
\(66\) 0 0
\(67\) 5.18464 + 8.98005i 0.633404 + 1.09709i 0.986851 + 0.161634i \(0.0516763\pi\)
−0.353447 + 0.935455i \(0.614990\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.72538 + 4.72049i 0.323443 + 0.560219i 0.981196 0.193014i \(-0.0618264\pi\)
−0.657753 + 0.753233i \(0.728493\pi\)
\(72\) 0 0
\(73\) 12.3548 1.44602 0.723011 0.690836i \(-0.242758\pi\)
0.723011 + 0.690836i \(0.242758\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.08148 1.87317i −0.123246 0.213468i
\(78\) 0 0
\(79\) 6.26611 + 10.8532i 0.704993 + 1.22108i 0.966694 + 0.255935i \(0.0823832\pi\)
−0.261701 + 0.965149i \(0.584283\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.18464 + 7.24800i −0.459324 + 0.795572i −0.998925 0.0463486i \(-0.985241\pi\)
0.539602 + 0.841920i \(0.318575\pi\)
\(84\) 0 0
\(85\) 6.83705 0.741582
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.85482 13.6049i 0.832609 1.44212i −0.0633531 0.997991i \(-0.520179\pi\)
0.895962 0.444130i \(-0.146487\pi\)
\(90\) 0 0
\(91\) 1.14722 1.98704i 0.120261 0.208298i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.0887048 + 0.153641i −0.00910092 + 0.0157633i
\(96\) 0 0
\(97\) −16.8056 −1.70635 −0.853174 0.521627i \(-0.825325\pi\)
−0.853174 + 0.521627i \(0.825325\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.25889 −0.622783 −0.311391 0.950282i \(-0.600795\pi\)
−0.311391 + 0.950282i \(0.600795\pi\)
\(102\) 0 0
\(103\) −20.1919 −1.98956 −0.994782 0.102026i \(-0.967468\pi\)
−0.994782 + 0.102026i \(0.967468\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.72538 + 11.6487i 0.650167 + 1.12612i 0.983082 + 0.183165i \(0.0586343\pi\)
−0.332916 + 0.942957i \(0.608032\pi\)
\(108\) 0 0
\(109\) −3.24111 + 5.61377i −0.310442 + 0.537702i −0.978458 0.206445i \(-0.933810\pi\)
0.668016 + 0.744147i \(0.267144\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.80685 8.32571i 0.452191 0.783217i −0.546331 0.837569i \(-0.683976\pi\)
0.998522 + 0.0543520i \(0.0173093\pi\)
\(114\) 0 0
\(115\) −1.71815 2.97592i −0.160218 0.277506i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.06702 0.464493
\(120\) 0 0
\(121\) −2.48223 −0.225657
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 2.74834 4.76027i 0.243876 0.422405i −0.717939 0.696106i \(-0.754914\pi\)
0.961815 + 0.273701i \(0.0882477\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.347592 + 0.602047i −0.0303692 + 0.0526011i −0.880811 0.473469i \(-0.843002\pi\)
0.850441 + 0.526070i \(0.176335\pi\)
\(132\) 0 0
\(133\) −0.0657403 + 0.113866i −0.00570041 + 0.00987339i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.25889 −0.192990 −0.0964949 0.995333i \(-0.530763\pi\)
−0.0964949 + 0.995333i \(0.530763\pi\)
\(138\) 0 0
\(139\) 7.82982 13.5616i 0.664116 1.15028i −0.315408 0.948956i \(-0.602141\pi\)
0.979524 0.201327i \(-0.0645254\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.51777 + 7.82501i 0.377795 + 0.654361i
\(144\) 0 0
\(145\) −2.30685 3.99559i −0.191574 0.331815i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.25889 0.185055 0.0925276 0.995710i \(-0.470505\pi\)
0.0925276 + 0.995710i \(0.470505\pi\)
\(150\) 0 0
\(151\) 8.92575 + 15.4599i 0.726367 + 1.25810i 0.958409 + 0.285399i \(0.0921261\pi\)
−0.232042 + 0.972706i \(0.574541\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.45926 2.52751i −0.117211 0.203015i
\(156\) 0 0
\(157\) −4.67741 + 8.10151i −0.373298 + 0.646571i −0.990071 0.140570i \(-0.955106\pi\)
0.616773 + 0.787141i \(0.288440\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.27334 2.20549i −0.100353 0.173817i
\(162\) 0 0
\(163\) 6.72538 11.6487i 0.526772 0.912396i −0.472741 0.881201i \(-0.656735\pi\)
0.999513 0.0311947i \(-0.00993120\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0.984263 + 1.70479i 0.0761646 + 0.131921i 0.901592 0.432587i \(-0.142399\pi\)
−0.825428 + 0.564508i \(0.809066\pi\)
\(168\) 0 0
\(169\) 1.70760 2.95765i 0.131354 0.227512i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.41852 + 12.8493i −0.564020 + 0.976911i 0.433120 + 0.901336i \(0.357413\pi\)
−0.997140 + 0.0755749i \(0.975921\pi\)
\(174\) 0 0
\(175\) −2.96445 −0.224091
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 7.67409 0.573588 0.286794 0.957992i \(-0.407410\pi\)
0.286794 + 0.957992i \(0.407410\pi\)
\(180\) 0 0
\(181\) −1.75889 3.04648i −0.130737 0.226443i 0.793224 0.608930i \(-0.208401\pi\)
−0.923961 + 0.382487i \(0.875068\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.93630 + 4.63741i −0.289402 + 0.340949i
\(186\) 0 0
\(187\) −9.97704 + 17.2807i −0.729593 + 1.26369i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −17.2733 −1.24986 −0.624928 0.780683i \(-0.714872\pi\)
−0.624928 + 0.780683i \(0.714872\pi\)
\(192\) 0 0
\(193\) −4.09593 −0.294832 −0.147416 0.989075i \(-0.547096\pi\)
−0.147416 + 0.989075i \(0.547096\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.95075 17.2352i 0.708962 1.22796i −0.256281 0.966602i \(-0.582497\pi\)
0.965243 0.261355i \(-0.0841694\pi\)
\(198\) 0 0
\(199\) 8.51777 0.603809 0.301905 0.953338i \(-0.402378\pi\)
0.301905 + 0.953338i \(0.402378\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.70964 2.96118i −0.119993 0.207834i
\(204\) 0 0
\(205\) 0.322590 0.558743i 0.0225307 0.0390243i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −0.258887 0.448406i −0.0179076 0.0310169i
\(210\) 0 0
\(211\) 24.1919 1.66544 0.832718 0.553697i \(-0.186783\pi\)
0.832718 + 0.553697i \(0.186783\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.74111 + 3.01570i 0.118743 + 0.205669i
\(216\) 0 0
\(217\) −1.08148 1.87317i −0.0734155 0.127159i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −21.1670 −1.42385
\(222\) 0 0
\(223\) −15.1104 −1.01187 −0.505933 0.862573i \(-0.668852\pi\)
−0.505933 + 0.862573i \(0.668852\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8.82982 15.2937i −0.586056 1.01508i −0.994743 0.102404i \(-0.967347\pi\)
0.408687 0.912674i \(-0.365987\pi\)
\(228\) 0 0
\(229\) −13.1282 22.7386i −0.867533 1.50261i −0.864510 0.502616i \(-0.832371\pi\)
−0.00302375 0.999995i \(-0.500962\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.8411 −1.43086 −0.715430 0.698685i \(-0.753769\pi\)
−0.715430 + 0.698685i \(0.753769\pi\)
\(234\) 0 0
\(235\) −4.89556 8.47936i −0.319351 0.553132i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.20760 + 14.2160i −0.530906 + 0.919556i 0.468444 + 0.883493i \(0.344815\pi\)
−0.999350 + 0.0360623i \(0.988519\pi\)
\(240\) 0 0
\(241\) 2.06574 + 3.57797i 0.133066 + 0.230477i 0.924857 0.380315i \(-0.124184\pi\)
−0.791791 + 0.610792i \(0.790851\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −6.45075 −0.412123
\(246\) 0 0
\(247\) 0.274624 0.475663i 0.0174739 0.0302657i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.1563 −0.704180 −0.352090 0.935966i \(-0.614529\pi\)
−0.352090 + 0.935966i \(0.614529\pi\)
\(252\) 0 0
\(253\) 10.0289 0.630512
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.51445 + 13.0154i −0.468739 + 0.811879i −0.999362 0.0357287i \(-0.988625\pi\)
0.530623 + 0.847608i \(0.321958\pi\)
\(258\) 0 0
\(259\) −2.91724 + 3.43684i −0.181268 + 0.213555i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.4665 + 21.5926i 0.768717 + 1.33146i 0.938259 + 0.345933i \(0.112438\pi\)
−0.169542 + 0.985523i \(0.554229\pi\)
\(264\) 0 0
\(265\) −6.74111 −0.414103
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.1919 −0.865293 −0.432647 0.901564i \(-0.642420\pi\)
−0.432647 + 0.901564i \(0.642420\pi\)
\(270\) 0 0
\(271\) −4.78389 + 8.28594i −0.290601 + 0.503335i −0.973952 0.226755i \(-0.927188\pi\)
0.683351 + 0.730090i \(0.260522\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.83705 10.1101i 0.351987 0.609659i
\(276\) 0 0
\(277\) 3.41852 + 5.92105i 0.205399 + 0.355762i 0.950260 0.311458i \(-0.100817\pi\)
−0.744861 + 0.667220i \(0.767484\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.64186 9.77199i 0.336565 0.582948i −0.647219 0.762304i \(-0.724068\pi\)
0.983784 + 0.179356i \(0.0574014\pi\)
\(282\) 0 0
\(283\) −2.37056 4.10592i −0.140915 0.244072i 0.786926 0.617047i \(-0.211671\pi\)
−0.927841 + 0.372975i \(0.878338\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0.239076 0.414092i 0.0141122 0.0244430i
\(288\) 0 0
\(289\) −14.8726 25.7601i −0.874858 1.51530i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.241113 0.417620i −0.0140860 0.0243976i 0.858896 0.512149i \(-0.171151\pi\)
−0.872982 + 0.487752i \(0.837817\pi\)
\(294\) 0 0
\(295\) −7.45075 −0.433800
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.31927 + 9.21325i 0.307621 + 0.532816i
\(300\) 0 0
\(301\) 1.29036 + 2.23497i 0.0743752 + 0.128822i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.67741 6.36946i 0.210568 0.364714i
\(306\) 0 0
\(307\) −3.80814 −0.217342 −0.108671 0.994078i \(-0.534659\pi\)
−0.108671 + 0.994078i \(0.534659\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.4350 + 23.2701i −0.761830 + 1.31953i 0.180077 + 0.983653i \(0.442365\pi\)
−0.941906 + 0.335875i \(0.890968\pi\)
\(312\) 0 0
\(313\) −9.38705 + 16.2588i −0.530587 + 0.919004i 0.468776 + 0.883317i \(0.344695\pi\)
−0.999363 + 0.0356870i \(0.988638\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.90075 17.1486i 0.556081 0.963161i −0.441737 0.897145i \(-0.645638\pi\)
0.997819 0.0660167i \(-0.0210291\pi\)
\(318\) 0 0
\(319\) 13.4652 0.753907
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.21296 0.0674908
\(324\) 0 0
\(325\) 12.3837 0.686926
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.62816 6.28416i −0.200027 0.346457i
\(330\) 0 0
\(331\) −3.88833 + 6.73479i −0.213722 + 0.370177i −0.952876 0.303359i \(-0.901892\pi\)
0.739154 + 0.673536i \(0.235225\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.18464 8.98005i 0.283267 0.490633i
\(336\) 0 0
\(337\) −7.29112 12.6286i −0.397172 0.687923i 0.596203 0.802833i \(-0.296675\pi\)
−0.993376 + 0.114911i \(0.963342\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.51777 0.461263
\(342\) 0 0
\(343\) −9.96853 −0.538250
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.85406 −0.206897 −0.103449 0.994635i \(-0.532988\pi\)
−0.103449 + 0.994635i \(0.532988\pi\)
\(348\) 0 0
\(349\) −8.11371 + 14.0534i −0.434317 + 0.752259i −0.997240 0.0742508i \(-0.976343\pi\)
0.562923 + 0.826509i \(0.309677\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.4685 + 19.8641i −0.610408 + 1.05726i 0.380764 + 0.924672i \(0.375661\pi\)
−0.991172 + 0.132585i \(0.957672\pi\)
\(354\) 0 0
\(355\) 2.72538 4.72049i 0.144648 0.250538i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −37.4193 −1.97491 −0.987457 0.157888i \(-0.949531\pi\)
−0.987457 + 0.157888i \(0.949531\pi\)
\(360\) 0 0
\(361\) 9.48426 16.4272i 0.499172 0.864591i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.17741 10.6996i −0.323340 0.560042i
\(366\) 0 0
\(367\) 3.88833 + 6.73479i 0.202969 + 0.351553i 0.949484 0.313816i \(-0.101608\pi\)
−0.746515 + 0.665369i \(0.768274\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −4.99593 −0.259376
\(372\) 0 0
\(373\) −5.69186 9.85860i −0.294714 0.510459i 0.680205 0.733022i \(-0.261891\pi\)
−0.974918 + 0.222563i \(0.928558\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.14186 + 12.3701i 0.367825 + 0.637091i
\(378\) 0 0
\(379\) −0.756850 + 1.31090i −0.0388768 + 0.0673365i −0.884809 0.465954i \(-0.845711\pi\)
0.845932 + 0.533290i \(0.179045\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11.2431 + 19.4737i 0.574498 + 0.995060i 0.996096 + 0.0882770i \(0.0281361\pi\)
−0.421598 + 0.906783i \(0.638531\pi\)
\(384\) 0 0
\(385\) −1.08148 + 1.87317i −0.0551172 + 0.0954658i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.2241 17.7086i −0.518382 0.897864i −0.999772 0.0213575i \(-0.993201\pi\)
0.481390 0.876507i \(-0.340132\pi\)
\(390\) 0 0
\(391\) −11.7471 + 20.3465i −0.594074 + 1.02897i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.26611 10.8532i 0.315282 0.546085i
\(396\) 0 0
\(397\) 22.4508 1.12677 0.563385 0.826194i \(-0.309499\pi\)
0.563385 + 0.826194i \(0.309499\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.64518 0.182032 0.0910158 0.995849i \(-0.470989\pi\)
0.0910158 + 0.995849i \(0.470989\pi\)
\(402\) 0 0
\(403\) 4.51777 + 7.82501i 0.225046 + 0.389792i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.97704 16.7162i −0.296271 0.828593i
\(408\) 0 0
\(409\) −14.8693 + 25.7543i −0.735238 + 1.27347i 0.219380 + 0.975639i \(0.429596\pi\)
−0.954619 + 0.297831i \(0.903737\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −5.52185 −0.271712
\(414\) 0 0
\(415\) 8.36927 0.410832
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17.9843 31.1497i 0.878589 1.52176i 0.0256987 0.999670i \(-0.491819\pi\)
0.852890 0.522091i \(-0.174848\pi\)
\(420\) 0 0
\(421\) −38.3167 −1.86744 −0.933721 0.358002i \(-0.883458\pi\)
−0.933721 + 0.358002i \(0.883458\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 13.6741 + 23.6842i 0.663291 + 1.14885i
\(426\) 0 0
\(427\) 2.72538 4.72049i 0.131890 0.228440i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.74834 9.95642i −0.276888 0.479584i 0.693722 0.720243i \(-0.255970\pi\)
−0.970610 + 0.240659i \(0.922636\pi\)
\(432\) 0 0
\(433\) −5.83297 −0.280315 −0.140157 0.990129i \(-0.544761\pi\)
−0.140157 + 0.990129i \(0.544761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.304816 0.527957i −0.0145813 0.0252556i
\(438\) 0 0
\(439\) 2.24315 + 3.88525i 0.107060 + 0.185433i 0.914578 0.404410i \(-0.132523\pi\)
−0.807518 + 0.589843i \(0.799190\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −15.7096 −0.744708
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.16167 + 2.01208i 0.0548227 + 0.0949557i 0.892134 0.451770i \(-0.149207\pi\)
−0.837312 + 0.546726i \(0.815874\pi\)
\(450\) 0 0
\(451\) 0.941487 + 1.63070i 0.0443329 + 0.0767868i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.29444 −0.107565
\(456\) 0 0
\(457\) 4.19518 + 7.26627i 0.196242 + 0.339902i 0.947307 0.320327i \(-0.103793\pi\)
−0.751065 + 0.660229i \(0.770459\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 16.9987 29.4426i 0.791709 1.37128i −0.133199 0.991089i \(-0.542525\pi\)
0.924908 0.380191i \(-0.124142\pi\)
\(462\) 0 0
\(463\) 11.1117 + 19.2460i 0.516403 + 0.894436i 0.999819 + 0.0190454i \(0.00606269\pi\)
−0.483416 + 0.875391i \(0.660604\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.29036 0.337358 0.168679 0.985671i \(-0.446050\pi\)
0.168679 + 0.985671i \(0.446050\pi\)
\(468\) 0 0
\(469\) 3.84240 6.65523i 0.177426 0.307310i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −10.1630 −0.467293
\(474\) 0 0
\(475\) −0.709639 −0.0325605
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −0.792398 + 1.37247i −0.0362056 + 0.0627099i −0.883560 0.468317i \(-0.844860\pi\)
0.847355 + 0.531027i \(0.178194\pi\)
\(480\) 0 0
\(481\) 12.1865 14.3571i 0.555657 0.654628i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.40279 + 14.5541i 0.381551 + 0.660865i
\(486\) 0 0
\(487\) 34.7845 1.57624 0.788118 0.615525i \(-0.211056\pi\)
0.788118 + 0.615525i \(0.211056\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14.8267 0.669118 0.334559 0.942375i \(-0.391413\pi\)
0.334559 + 0.942375i \(0.391413\pi\)
\(492\) 0 0
\(493\) −15.7721 + 27.3180i −0.710338 + 1.23034i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2.01981 3.49842i 0.0906009 0.156925i
\(498\) 0 0
\(499\) 5.39352 + 9.34185i 0.241447 + 0.418199i 0.961127 0.276108i \(-0.0890446\pi\)
−0.719680 + 0.694306i \(0.755711\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −16.2806 + 28.1988i −0.725915 + 1.25732i 0.232682 + 0.972553i \(0.425250\pi\)
−0.958596 + 0.284768i \(0.908083\pi\)
\(504\) 0 0
\(505\) 3.12944 + 5.42036i 0.139258 + 0.241203i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 10.9363 18.9422i 0.484743 0.839599i −0.515104 0.857128i \(-0.672247\pi\)
0.999846 + 0.0175288i \(0.00557986\pi\)
\(510\) 0 0
\(511\) −4.57816 7.92960i −0.202526 0.350785i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 10.0959 + 17.4867i 0.444880 + 0.770555i
\(516\) 0 0
\(517\) 28.5756 1.25675
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.8672 32.6790i −0.826589 1.43169i −0.900699 0.434444i \(-0.856945\pi\)
0.0741104 0.997250i \(-0.476388\pi\)
\(522\) 0 0
\(523\) −21.6669 37.5281i −0.947426 1.64099i −0.750820 0.660507i \(-0.770341\pi\)
−0.196606 0.980483i \(-0.562992\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −9.97704 + 17.2807i −0.434606 + 0.752761i
\(528\) 0 0
\(529\) −11.1919 −0.486603
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.998718 + 1.72983i −0.0432593 + 0.0749273i
\(534\) 0 0
\(535\) 6.72538 11.6487i 0.290763 0.503617i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 9.41333 16.3044i 0.405461 0.702279i
\(540\) 0 0
\(541\) 16.1959 0.696318 0.348159 0.937436i \(-0.386807\pi\)
0.348159 + 0.937436i \(0.386807\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 6.48223 0.277668
\(546\) 0 0
\(547\) −16.0459 −0.686074 −0.343037 0.939322i \(-0.611456\pi\)
−0.343037 + 0.939322i \(0.611456\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.409258 0.708856i −0.0174350 0.0301983i
\(552\) 0 0
\(553\) 4.64390 8.04347i 0.197479 0.342043i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −15.2556 + 26.4234i −0.646399 + 1.11960i 0.337577 + 0.941298i \(0.390393\pi\)
−0.983976 + 0.178298i \(0.942941\pi\)
\(558\) 0 0
\(559\) −5.39037 9.33639i −0.227988 0.394887i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 31.1104 1.31115 0.655573 0.755132i \(-0.272427\pi\)
0.655573 + 0.755132i \(0.272427\pi\)
\(564\) 0 0
\(565\) −9.61371 −0.404452
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.4508 0.773496 0.386748 0.922185i \(-0.373598\pi\)
0.386748 + 0.922185i \(0.373598\pi\)
\(570\) 0 0
\(571\) 3.07425 5.32476i 0.128653 0.222834i −0.794502 0.607262i \(-0.792268\pi\)
0.923155 + 0.384428i \(0.125601\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 6.87259 11.9037i 0.286607 0.496418i
\(576\) 0 0
\(577\) −1.72538 + 2.98844i −0.0718283 + 0.124410i −0.899703 0.436503i \(-0.856217\pi\)
0.827874 + 0.560914i \(0.189550\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.20258 0.257326
\(582\) 0 0
\(583\) 9.83705 17.0383i 0.407409 0.705653i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6.91130 + 11.9707i 0.285260 + 0.494084i 0.972672 0.232183i \(-0.0745868\pi\)
−0.687412 + 0.726267i \(0.741253\pi\)
\(588\) 0 0
\(589\) −0.258887 0.448406i −0.0106673 0.0184762i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 32.6715 1.34166 0.670829 0.741612i \(-0.265938\pi\)
0.670829 + 0.741612i \(0.265938\pi\)
\(594\) 0 0
\(595\) −2.53351 4.38817i −0.103864 0.179897i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.71687 + 13.3660i 0.315303 + 0.546120i 0.979502 0.201436i \(-0.0645607\pi\)
−0.664199 + 0.747556i \(0.731227\pi\)
\(600\) 0 0
\(601\) −0.744432 + 1.28939i −0.0303660 + 0.0525955i −0.880809 0.473472i \(-0.843001\pi\)
0.850443 + 0.526067i \(0.176334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 1.24111 + 2.14967i 0.0504584 + 0.0873965i
\(606\) 0 0
\(607\) 3.12425 5.41137i 0.126810 0.219641i −0.795629 0.605784i \(-0.792860\pi\)
0.922439 + 0.386143i \(0.126193\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.1563 + 26.2515i 0.613159 + 1.06202i
\(612\) 0 0
\(613\) 13.8693 24.0223i 0.560175 0.970251i −0.437306 0.899313i \(-0.644067\pi\)
0.997481 0.0709383i \(-0.0225993\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.72538 6.45254i 0.149978 0.259769i −0.781241 0.624229i \(-0.785413\pi\)
0.931219 + 0.364460i \(0.118746\pi\)
\(618\) 0 0
\(619\) 16.1919 0.650806 0.325403 0.945575i \(-0.394500\pi\)
0.325403 + 0.945575i \(0.394500\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.6426 −0.466452
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.9147 + 7.45394i 1.63137 + 0.297208i
\(630\) 0 0
\(631\) 0.393521 0.681598i 0.0156658 0.0271340i −0.858086 0.513506i \(-0.828347\pi\)
0.873752 + 0.486372i \(0.161680\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.49668 −0.218129
\(636\) 0 0
\(637\) 19.9711 0.791283
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −10.1741 + 17.6220i −0.401852 + 0.696029i −0.993950 0.109838i \(-0.964967\pi\)
0.592097 + 0.805867i \(0.298300\pi\)
\(642\) 0 0
\(643\) 0.429658 0.0169441 0.00847203 0.999964i \(-0.497303\pi\)
0.00847203 + 0.999964i \(0.497303\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.40610 + 9.36365i 0.212536 + 0.368123i 0.952507 0.304515i \(-0.0984944\pi\)
−0.739972 + 0.672638i \(0.765161\pi\)
\(648\) 0 0
\(649\) 10.8726 18.8319i 0.426787 0.739216i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −2.12816 3.68608i −0.0832814 0.144248i 0.821376 0.570387i \(-0.193207\pi\)
−0.904658 + 0.426139i \(0.859873\pi\)
\(654\) 0 0
\(655\) 0.695184 0.0271631
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −22.5980 39.1408i −0.880292 1.52471i −0.851017 0.525139i \(-0.824013\pi\)
−0.0292754 0.999571i \(-0.509320\pi\)
\(660\) 0 0
\(661\) 3.01777 + 5.22694i 0.117378 + 0.203304i 0.918728 0.394891i \(-0.129218\pi\)
−0.801350 + 0.598196i \(0.795884\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.131481 0.00509860
\(666\) 0 0
\(667\) 15.8541 0.613872
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.7326 + 18.5894i 0.414328 + 0.717636i
\(672\) 0 0
\(673\) 23.9317 + 41.4509i 0.922499 + 1.59782i 0.795535 + 0.605908i \(0.207190\pi\)
0.126964 + 0.991907i \(0.459477\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −45.0893 −1.73292 −0.866461 0.499244i \(-0.833611\pi\)
−0.866461 + 0.499244i \(0.833611\pi\)
\(678\) 0 0
\(679\) 6.22741 + 10.7862i 0.238986 + 0.413936i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.01574 + 6.95546i −0.153658 + 0.266143i −0.932570 0.360990i \(-0.882439\pi\)
0.778912 + 0.627134i \(0.215772\pi\)
\(684\) 0 0
\(685\) 1.12944 + 1.95625i 0.0431538 + 0.0747446i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.8700 0.795085
\(690\) 0 0
\(691\) −8.78389 + 15.2141i −0.334155 + 0.578773i −0.983322 0.181872i \(-0.941784\pi\)
0.649167 + 0.760646i \(0.275118\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.6596 −0.594004
\(696\) 0 0
\(697\) −4.41113 −0.167083
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.01574 + 3.49136i −0.0761333 + 0.131867i −0.901579 0.432615i \(-0.857591\pi\)
0.825445 + 0.564482i \(0.190924\pi\)
\(702\) 0 0
\(703\) −0.698337 + 0.822721i −0.0263383 + 0.0310295i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.31927 + 4.01710i 0.0872252 + 0.151078i
\(708\) 0 0
\(709\) 9.15632 0.343873 0.171936 0.985108i \(-0.444998\pi\)
0.171936 + 0.985108i \(0.444998\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.0289 0.375586
\(714\) 0 0
\(715\) 4.51777 7.82501i 0.168955 0.292639i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 9.11761 15.7922i 0.340030 0.588949i −0.644408 0.764682i \(-0.722896\pi\)
0.984438 + 0.175733i \(0.0562296\pi\)
\(720\) 0 0
\(721\) 7.48223 + 12.9596i 0.278653 + 0.482641i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.22741 15.9823i 0.342698 0.593570i
\(726\) 0 0
\(727\) 3.88833 + 6.73479i 0.144210 + 0.249779i 0.929078 0.369884i \(-0.120603\pi\)
−0.784868 + 0.619663i \(0.787269\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.9041 20.6185i 0.440288 0.762601i
\(732\) 0 0
\(733\) −5.41649 9.38163i −0.200062 0.346518i 0.748486 0.663151i \(-0.230781\pi\)
−0.948548 + 0.316632i \(0.897448\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.1315 + 26.2085i 0.557375 + 0.965402i
\(738\) 0 0
\(739\) −31.9119 −1.17390 −0.586949 0.809624i \(-0.699671\pi\)
−0.586949 + 0.809624i \(0.699671\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.5395 23.4510i −0.496714 0.860335i 0.503278 0.864124i \(-0.332127\pi\)
−0.999993 + 0.00378964i \(0.998794\pi\)
\(744\) 0 0
\(745\) −1.12944 1.95625i −0.0413796 0.0716716i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.98426 8.63300i 0.182121 0.315443i
\(750\) 0 0
\(751\) −6.77259 −0.247135 −0.123568 0.992336i \(-0.539434\pi\)
−0.123568 + 0.992336i \(0.539434\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.92575 15.4599i 0.324841 0.562642i
\(756\) 0 0
\(757\) 12.2241 21.1728i 0.444292 0.769537i −0.553710 0.832709i \(-0.686789\pi\)
0.998003 + 0.0631726i \(0.0201219\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.595932 + 1.03218i −0.0216025 + 0.0374167i −0.876625 0.481175i \(-0.840210\pi\)
0.855022 + 0.518592i \(0.173543\pi\)
\(762\) 0 0
\(763\) 4.80406 0.173919
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 23.0670 0.832902
\(768\) 0 0
\(769\) 37.7741 1.36217 0.681084 0.732205i \(-0.261509\pi\)
0.681084 + 0.732205i \(0.261509\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.6919 + 41.0355i 0.852137 + 1.47594i 0.879276 + 0.476313i \(0.158027\pi\)
−0.0271386 + 0.999632i \(0.508640\pi\)
\(774\) 0 0
\(775\) 5.83705 10.1101i 0.209673 0.363164i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.0572306 0.0991264i 0.00205050 0.00355157i
\(780\) 0 0
\(781\) 7.95407 + 13.7769i 0.284619 + 0.492975i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 9.35482 0.333888
\(786\) 0 0
\(787\) −28.0578 −1.00015 −0.500077 0.865981i \(-0.666695\pi\)
−0.500077 + 0.865981i \(0.666695\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.12484 −0.253330
\(792\) 0 0
\(793\) −11.3850 + 19.7194i −0.404294 + 0.700257i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.43094 7.67461i 0.156952 0.271849i −0.776816 0.629728i \(-0.783167\pi\)
0.933768 + 0.357879i \(0.116500\pi\)
\(798\) 0 0
\(799\) −33.4712 + 57.9737i −1.18412 + 2.05096i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 36.0578 1.27245
\(804\) 0 0
\(805\) −1.27334 + 2.20549i −0.0448794 + 0.0777334i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.2076 38.4647i −0.780778 1.35235i −0.931489 0.363769i \(-0.881490\pi\)
0.150712 0.988578i \(-0.451844\pi\)
\(810\) 0 0
\(811\) −18.0487 31.2613i −0.633776 1.09773i −0.986773 0.162108i \(-0.948171\pi\)
0.352997 0.935625i \(-0.385163\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −13.4508 −0.471159
\(816\) 0 0
\(817\) 0.308890 + 0.535014i 0.0108067 + 0.0187178i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.8883 + 20.5912i 0.414906 + 0.718638i 0.995419 0.0956134i \(-0.0304813\pi\)
−0.580513 + 0.814251i \(0.697148\pi\)
\(822\) 0 0
\(823\) 22.5395 39.0395i 0.785676 1.36083i −0.142918 0.989734i \(-0.545649\pi\)
0.928594 0.371096i \(-0.121018\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −26.5980 46.0690i −0.924902 1.60198i −0.791719 0.610886i \(-0.790813\pi\)
−0.133183 0.991091i \(-0.542520\pi\)
\(828\) 0 0
\(829\) 17.9028 31.0085i 0.621789 1.07697i −0.367363 0.930078i \(-0.619739\pi\)
0.989152 0.146893i \(-0.0469274\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 22.0520 + 38.1953i 0.764058 + 1.32339i
\(834\) 0 0
\(835\) 0.984263 1.70479i 0.0340618 0.0589968i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.23057 + 7.32756i −0.146055 + 0.252975i −0.929766 0.368151i \(-0.879991\pi\)
0.783711 + 0.621126i \(0.213324\pi\)
\(840\) 0 0
\(841\) −7.71371 −0.265990
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.41520 −0.117487
\(846\) 0 0
\(847\) 0.919805 + 1.59315i 0.0316049 + 0.0547412i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −7.03742 19.6819i −0.241240 0.674686i
\(852\) 0 0
\(853\) 5.01777 8.69104i 0.171805 0.297576i −0.767246 0.641353i \(-0.778373\pi\)
0.939051 + 0.343778i \(0.111707\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −42.6426 −1.45664 −0.728322 0.685235i \(-0.759699\pi\)
−0.728322 + 0.685235i \(0.759699\pi\)
\(858\) 0 0
\(859\) 54.7045 1.86649 0.933247 0.359236i \(-0.116963\pi\)
0.933247 + 0.359236i \(0.116963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.823873 1.42699i 0.0280449 0.0485753i −0.851662 0.524091i \(-0.824405\pi\)
0.879707 + 0.475516i \(0.157739\pi\)
\(864\) 0 0
\(865\) 14.8370 0.504475
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.2878 + 31.6754i 0.620371 + 1.07451i
\(870\) 0 0
\(871\) −16.0513 + 27.8016i −0.543877 + 0.942023i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.33501 + 5.77640i 0.112744 + 0.195278i
\(876\) 0 0
\(877\) −52.9056 −1.78649 −0.893247 0.449566i \(-0.851579\pi\)
−0.893247 + 0.449566i \(0.851579\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9.11371 15.7854i −0.307049 0.531824i 0.670667 0.741759i \(-0.266008\pi\)
−0.977715 + 0.209935i \(0.932675\pi\)
\(882\) 0 0
\(883\) −4.65648 8.06526i −0.156703 0.271418i 0.776975 0.629532i \(-0.216753\pi\)
−0.933678 + 0.358114i \(0.883420\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −17.6571 −0.592866 −0.296433 0.955054i \(-0.595797\pi\)
−0.296433 + 0.955054i \(0.595797\pi\)
\(888\) 0 0
\(889\) −4.07366 −0.136626
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.868519 1.50432i −0.0290639 0.0503401i
\(894\) 0 0
\(895\) −3.83705 6.64596i −0.128258 0.222150i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 13.4652 0.449090
\(900\) 0 0
\(901\) 23.0446 + 39.9145i 0.767728 + 1.32974i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.75889 + 3.04648i −0.0584674 + 0.101268i
\(906\) 0 0
\(907\) 7.37650 + 12.7765i 0.244933 + 0.424236i 0.962113 0.272652i \(-0.0879008\pi\)
−0.717180 + 0.696888i \(0.754567\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 57.0053 1.88867 0.944334 0.328988i \(-0.106708\pi\)
0.944334 + 0.328988i \(0.106708\pi\)
\(912\) 0 0
\(913\) −12.2130 + 21.1535i −0.404190 + 0.700077i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0.515210 0.0170137
\(918\) 0 0
\(919\) −14.4007 −0.475037 −0.237518 0.971383i \(-0.576334\pi\)
−0.237518 + 0.971383i \(0.576334\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −8.43758 + 14.6143i −0.277726 + 0.481036i
\(924\) 0 0
\(925\) −23.9371 4.36091i −0.787045 0.143386i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 17.1782 + 29.7535i 0.563597 + 0.976179i 0.997179 + 0.0750647i \(0.0239163\pi\)
−0.433581 + 0.901114i \(0.642750\pi\)
\(930\) 0 0
\(931\) −1.14443 −0.0375070
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 19.9541 0.652568
\(936\) 0 0
\(937\) 23.9863 41.5455i 0.783598 1.35723i −0.146235 0.989250i \(-0.546715\pi\)
0.929833 0.367982i \(-0.119951\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −25.2385 + 43.7144i −0.822753 + 1.42505i 0.0808712 + 0.996725i \(0.474230\pi\)
−0.903624 + 0.428326i \(0.859104\pi\)
\(942\) 0 0
\(943\) 1.10852 + 1.92001i 0.0360982 + 0.0625240i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.0802 24.3876i 0.457545 0.792491i −0.541286 0.840839i \(-0.682062\pi\)
0.998831 + 0.0483478i \(0.0153956\pi\)
\(948\) 0 0
\(949\) 19.1248 + 33.1252i 0.620819 + 1.07529i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.917240 + 1.58871i −0.0297123 + 0.0514633i −0.880499 0.474048i \(-0.842792\pi\)
0.850787 + 0.525511i \(0.176126\pi\)
\(954\) 0 0
\(955\) 8.63667 + 14.9592i 0.279476 + 0.484067i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.837045 + 1.44980i 0.0270296 + 0.0468166i
\(960\) 0 0
\(961\) −22.4822 −0.725233
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.04797 + 3.54718i 0.0659264 + 0.114188i
\(966\) 0 0
\(967\) −15.8569 27.4649i −0.509922 0.883211i −0.999934 0.0114952i \(-0.996341\pi\)
0.490012 0.871716i \(-0.336992\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.40798 7.63484i 0.141459 0.245014i −0.786587 0.617479i \(-0.788154\pi\)
0.928046 + 0.372465i \(0.121487\pi\)
\(972\) 0 0
\(973\) −11.6056 −0.372057
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 14.9698 25.9285i 0.478927 0.829525i −0.520781 0.853690i \(-0.674359\pi\)
0.999708 + 0.0241649i \(0.00769267\pi\)
\(978\) 0 0
\(979\) 22.9245 39.7063i 0.732669 1.26902i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.7524 + 35.9442i −0.661899 + 1.14644i 0.318217 + 0.948018i \(0.396916\pi\)
−0.980116 + 0.198425i \(0.936417\pi\)
\(984\) 0 0
\(985\) −19.9015 −0.634115
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −11.9660 −0.380495
\(990\) 0 0
\(991\) −48.0660 −1.52687 −0.763433 0.645887i \(-0.776488\pi\)
−0.763433 + 0.645887i \(0.776488\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.25889 7.37661i −0.135016 0.233854i
\(996\) 0 0
\(997\) −24.3180 + 42.1200i −0.770158 + 1.33395i 0.167317 + 0.985903i \(0.446490\pi\)
−0.937476 + 0.348050i \(0.886844\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1332.2.j.e.1009.2 6
3.2 odd 2 148.2.e.a.121.3 6
12.11 even 2 592.2.i.f.417.1 6
37.26 even 3 inner 1332.2.j.e.433.2 6
111.26 odd 6 148.2.e.a.137.3 yes 6
111.47 odd 6 5476.2.a.f.1.1 3
111.101 odd 6 5476.2.a.g.1.1 3
444.359 even 6 592.2.i.f.433.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
148.2.e.a.121.3 6 3.2 odd 2
148.2.e.a.137.3 yes 6 111.26 odd 6
592.2.i.f.417.1 6 12.11 even 2
592.2.i.f.433.1 6 444.359 even 6
1332.2.j.e.433.2 6 37.26 even 3 inner
1332.2.j.e.1009.2 6 1.1 even 1 trivial
5476.2.a.f.1.1 3 111.47 odd 6
5476.2.a.g.1.1 3 111.101 odd 6