Properties

Label 592.2.i.f.433.1
Level $592$
Weight $2$
Character 592.433
Analytic conductor $4.727$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [592,2,Mod(417,592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("592.417");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 592 = 2^{4} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 592.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.72714379966\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.27870912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} + 2x^{3} + 38x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 148)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.1
Root \(-1.08870 - 1.88569i\) of defining polynomial
Character \(\chi\) \(=\) 592.433
Dual form 592.2.i.f.417.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.08870 + 1.88569i) q^{3} +(0.500000 - 0.866025i) q^{5} +(0.370556 - 0.641823i) q^{7} +(-0.870556 - 1.50785i) q^{9} +2.91852 q^{11} +(1.54797 - 2.68116i) q^{13} +(1.08870 + 1.88569i) q^{15} +(3.41852 + 5.92105i) q^{17} +(0.0887048 - 0.153641i) q^{19} +(0.806853 + 1.39751i) q^{21} +3.43630 q^{23} +(2.00000 + 3.46410i) q^{25} -2.74111 q^{27} -4.61371 q^{29} -2.91852 q^{31} +(-3.17741 + 5.50344i) q^{33} +(-0.370556 - 0.641823i) q^{35} +(-2.04797 + 5.72764i) q^{37} +(3.37056 + 5.83798i) q^{39} +(-0.322590 + 0.558743i) q^{41} +3.48223 q^{43} -1.74111 q^{45} +9.79112 q^{47} +(3.22538 + 5.58651i) q^{49} -14.8870 q^{51} +(-3.37056 - 5.83798i) q^{53} +(1.45926 - 2.52751i) q^{55} +(0.193147 + 0.334540i) q^{57} +(3.72538 + 6.45254i) q^{59} +(3.67741 - 6.36946i) q^{61} -1.29036 q^{63} +(-1.54797 - 2.68116i) q^{65} +(-5.18464 + 8.98005i) q^{67} +(-3.74111 + 6.47980i) q^{69} +(2.72538 - 4.72049i) q^{71} +12.3548 q^{73} -8.70964 q^{75} +(1.08148 - 1.87317i) q^{77} +(-6.26611 + 10.8532i) q^{79} +(5.59593 - 9.69244i) q^{81} +(-4.18464 - 7.24800i) q^{83} +6.83705 q^{85} +(5.02296 - 8.70003i) q^{87} +(-7.85482 - 13.6049i) q^{89} +(-1.14722 - 1.98704i) q^{91} +(3.17741 - 5.50344i) q^{93} +(-0.0887048 - 0.153641i) q^{95} -16.8056 q^{97} +(-2.54074 - 4.40069i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 3 q^{5} + q^{7} - 4 q^{9} - 7 q^{13} - q^{15} + 3 q^{17} - 7 q^{19} - 9 q^{21} + 8 q^{23} + 12 q^{25} - 14 q^{27} - 4 q^{33} - q^{35} + 4 q^{37} + 19 q^{39} - 17 q^{41} + 16 q^{43} - 8 q^{45}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/592\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.08870 + 1.88569i −0.628564 + 1.08870i 0.359276 + 0.933231i \(0.383024\pi\)
−0.987840 + 0.155474i \(0.950310\pi\)
\(4\) 0 0
\(5\) 0.500000 0.866025i 0.223607 0.387298i −0.732294 0.680989i \(-0.761550\pi\)
0.955901 + 0.293691i \(0.0948835\pi\)
\(6\) 0 0
\(7\) 0.370556 0.641823i 0.140057 0.242586i −0.787461 0.616365i \(-0.788605\pi\)
0.927518 + 0.373779i \(0.121938\pi\)
\(8\) 0 0
\(9\) −0.870556 1.50785i −0.290185 0.502616i
\(10\) 0 0
\(11\) 2.91852 0.879968 0.439984 0.898006i \(-0.354984\pi\)
0.439984 + 0.898006i \(0.354984\pi\)
\(12\) 0 0
\(13\) 1.54797 2.68116i 0.429329 0.743619i −0.567485 0.823384i \(-0.692084\pi\)
0.996814 + 0.0797647i \(0.0254169\pi\)
\(14\) 0 0
\(15\) 1.08870 + 1.88569i 0.281102 + 0.486884i
\(16\) 0 0
\(17\) 3.41852 + 5.92105i 0.829114 + 1.43607i 0.898734 + 0.438493i \(0.144488\pi\)
−0.0696210 + 0.997574i \(0.522179\pi\)
\(18\) 0 0
\(19\) 0.0887048 0.153641i 0.0203503 0.0352477i −0.855671 0.517520i \(-0.826855\pi\)
0.876021 + 0.482273i \(0.160189\pi\)
\(20\) 0 0
\(21\) 0.806853 + 1.39751i 0.176070 + 0.304962i
\(22\) 0 0
\(23\) 3.43630 0.716517 0.358259 0.933622i \(-0.383371\pi\)
0.358259 + 0.933622i \(0.383371\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) −2.74111 −0.527527
\(28\) 0 0
\(29\) −4.61371 −0.856744 −0.428372 0.903603i \(-0.640913\pi\)
−0.428372 + 0.903603i \(0.640913\pi\)
\(30\) 0 0
\(31\) −2.91852 −0.524182 −0.262091 0.965043i \(-0.584412\pi\)
−0.262091 + 0.965043i \(0.584412\pi\)
\(32\) 0 0
\(33\) −3.17741 + 5.50344i −0.553116 + 0.958025i
\(34\) 0 0
\(35\) −0.370556 0.641823i −0.0626355 0.108488i
\(36\) 0 0
\(37\) −2.04797 + 5.72764i −0.336684 + 0.941618i
\(38\) 0 0
\(39\) 3.37056 + 5.83798i 0.539721 + 0.934824i
\(40\) 0 0
\(41\) −0.322590 + 0.558743i −0.0503801 + 0.0872610i −0.890116 0.455735i \(-0.849377\pi\)
0.839736 + 0.542996i \(0.182710\pi\)
\(42\) 0 0
\(43\) 3.48223 0.531034 0.265517 0.964106i \(-0.414457\pi\)
0.265517 + 0.964106i \(0.414457\pi\)
\(44\) 0 0
\(45\) −1.74111 −0.259550
\(46\) 0 0
\(47\) 9.79112 1.42818 0.714091 0.700053i \(-0.246840\pi\)
0.714091 + 0.700053i \(0.246840\pi\)
\(48\) 0 0
\(49\) 3.22538 + 5.58651i 0.460768 + 0.798074i
\(50\) 0 0
\(51\) −14.8870 −2.08460
\(52\) 0 0
\(53\) −3.37056 5.83798i −0.462982 0.801908i 0.536126 0.844138i \(-0.319887\pi\)
−0.999108 + 0.0422302i \(0.986554\pi\)
\(54\) 0 0
\(55\) 1.45926 2.52751i 0.196767 0.340810i
\(56\) 0 0
\(57\) 0.193147 + 0.334540i 0.0255829 + 0.0443109i
\(58\) 0 0
\(59\) 3.72538 + 6.45254i 0.485003 + 0.840049i 0.999852 0.0172318i \(-0.00548531\pi\)
−0.514849 + 0.857281i \(0.672152\pi\)
\(60\) 0 0
\(61\) 3.67741 6.36946i 0.470844 0.815526i −0.528600 0.848871i \(-0.677283\pi\)
0.999444 + 0.0333453i \(0.0106161\pi\)
\(62\) 0 0
\(63\) −1.29036 −0.162570
\(64\) 0 0
\(65\) −1.54797 2.68116i −0.192002 0.332556i
\(66\) 0 0
\(67\) −5.18464 + 8.98005i −0.633404 + 1.09709i 0.353447 + 0.935455i \(0.385010\pi\)
−0.986851 + 0.161634i \(0.948324\pi\)
\(68\) 0 0
\(69\) −3.74111 + 6.47980i −0.450377 + 0.780076i
\(70\) 0 0
\(71\) 2.72538 4.72049i 0.323443 0.560219i −0.657753 0.753233i \(-0.728493\pi\)
0.981196 + 0.193014i \(0.0618264\pi\)
\(72\) 0 0
\(73\) 12.3548 1.44602 0.723011 0.690836i \(-0.242758\pi\)
0.723011 + 0.690836i \(0.242758\pi\)
\(74\) 0 0
\(75\) −8.70964 −1.00570
\(76\) 0 0
\(77\) 1.08148 1.87317i 0.123246 0.213468i
\(78\) 0 0
\(79\) −6.26611 + 10.8532i −0.704993 + 1.22108i 0.261701 + 0.965149i \(0.415717\pi\)
−0.966694 + 0.255935i \(0.917617\pi\)
\(80\) 0 0
\(81\) 5.59593 9.69244i 0.621770 1.07694i
\(82\) 0 0
\(83\) −4.18464 7.24800i −0.459324 0.795572i 0.539602 0.841920i \(-0.318575\pi\)
−0.998925 + 0.0463486i \(0.985241\pi\)
\(84\) 0 0
\(85\) 6.83705 0.741582
\(86\) 0 0
\(87\) 5.02296 8.70003i 0.538518 0.932741i
\(88\) 0 0
\(89\) −7.85482 13.6049i −0.832609 1.44212i −0.895962 0.444130i \(-0.853513\pi\)
0.0633531 0.997991i \(-0.479821\pi\)
\(90\) 0 0
\(91\) −1.14722 1.98704i −0.120261 0.208298i
\(92\) 0 0
\(93\) 3.17741 5.50344i 0.329482 0.570680i
\(94\) 0 0
\(95\) −0.0887048 0.153641i −0.00910092 0.0157633i
\(96\) 0 0
\(97\) −16.8056 −1.70635 −0.853174 0.521627i \(-0.825325\pi\)
−0.853174 + 0.521627i \(0.825325\pi\)
\(98\) 0 0
\(99\) −2.54074 4.40069i −0.255354 0.442286i
\(100\) 0 0
\(101\) 6.25889 0.622783 0.311391 0.950282i \(-0.399205\pi\)
0.311391 + 0.950282i \(0.399205\pi\)
\(102\) 0 0
\(103\) 20.1919 1.98956 0.994782 0.102026i \(-0.0325324\pi\)
0.994782 + 0.102026i \(0.0325324\pi\)
\(104\) 0 0
\(105\) 1.61371 0.157482
\(106\) 0 0
\(107\) 6.72538 11.6487i 0.650167 1.12612i −0.332916 0.942957i \(-0.608032\pi\)
0.983082 0.183165i \(-0.0586343\pi\)
\(108\) 0 0
\(109\) −3.24111 5.61377i −0.310442 0.537702i 0.668016 0.744147i \(-0.267144\pi\)
−0.978458 + 0.206445i \(0.933810\pi\)
\(110\) 0 0
\(111\) −8.57093 10.0975i −0.813517 0.958416i
\(112\) 0 0
\(113\) −4.80685 8.32571i −0.452191 0.783217i 0.546331 0.837569i \(-0.316024\pi\)
−0.998522 + 0.0543520i \(0.982691\pi\)
\(114\) 0 0
\(115\) 1.71815 2.97592i 0.160218 0.277506i
\(116\) 0 0
\(117\) −5.39037 −0.498340
\(118\) 0 0
\(119\) 5.06702 0.464493
\(120\) 0 0
\(121\) −2.48223 −0.225657
\(122\) 0 0
\(123\) −0.702411 1.21661i −0.0633343 0.109698i
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −2.74834 4.76027i −0.243876 0.422405i 0.717939 0.696106i \(-0.245086\pi\)
−0.961815 + 0.273701i \(0.911752\pi\)
\(128\) 0 0
\(129\) −3.79112 + 6.56641i −0.333789 + 0.578140i
\(130\) 0 0
\(131\) −0.347592 0.602047i −0.0303692 0.0526011i 0.850441 0.526070i \(-0.176335\pi\)
−0.880811 + 0.473469i \(0.843002\pi\)
\(132\) 0 0
\(133\) −0.0657403 0.113866i −0.00570041 0.00987339i
\(134\) 0 0
\(135\) −1.37056 + 2.37387i −0.117959 + 0.204310i
\(136\) 0 0
\(137\) 2.25889 0.192990 0.0964949 0.995333i \(-0.469237\pi\)
0.0964949 + 0.995333i \(0.469237\pi\)
\(138\) 0 0
\(139\) −7.82982 13.5616i −0.664116 1.15028i −0.979524 0.201327i \(-0.935475\pi\)
0.315408 0.948956i \(-0.397859\pi\)
\(140\) 0 0
\(141\) −10.6596 + 18.4630i −0.897703 + 1.55487i
\(142\) 0 0
\(143\) 4.51777 7.82501i 0.377795 0.654361i
\(144\) 0 0
\(145\) −2.30685 + 3.99559i −0.191574 + 0.331815i
\(146\) 0 0
\(147\) −14.0459 −1.15849
\(148\) 0 0
\(149\) −2.25889 −0.185055 −0.0925276 0.995710i \(-0.529495\pi\)
−0.0925276 + 0.995710i \(0.529495\pi\)
\(150\) 0 0
\(151\) −8.92575 + 15.4599i −0.726367 + 1.25810i 0.232042 + 0.972706i \(0.425459\pi\)
−0.958409 + 0.285399i \(0.907874\pi\)
\(152\) 0 0
\(153\) 5.95203 10.3092i 0.481193 0.833451i
\(154\) 0 0
\(155\) −1.45926 + 2.52751i −0.117211 + 0.203015i
\(156\) 0 0
\(157\) −4.67741 8.10151i −0.373298 0.646571i 0.616773 0.787141i \(-0.288440\pi\)
−0.990071 + 0.140570i \(0.955106\pi\)
\(158\) 0 0
\(159\) 14.6782 1.16405
\(160\) 0 0
\(161\) 1.27334 2.20549i 0.100353 0.173817i
\(162\) 0 0
\(163\) −6.72538 11.6487i −0.526772 0.912396i −0.999513 0.0311947i \(-0.990069\pi\)
0.472741 0.881201i \(-0.343265\pi\)
\(164\) 0 0
\(165\) 3.17741 + 5.50344i 0.247361 + 0.428442i
\(166\) 0 0
\(167\) 0.984263 1.70479i 0.0761646 0.131921i −0.825428 0.564508i \(-0.809066\pi\)
0.901592 + 0.432587i \(0.142399\pi\)
\(168\) 0 0
\(169\) 1.70760 + 2.95765i 0.131354 + 0.227512i
\(170\) 0 0
\(171\) −0.308890 −0.0236214
\(172\) 0 0
\(173\) 7.41852 + 12.8493i 0.564020 + 0.976911i 0.997140 + 0.0755749i \(0.0240792\pi\)
−0.433120 + 0.901336i \(0.642587\pi\)
\(174\) 0 0
\(175\) 2.96445 0.224091
\(176\) 0 0
\(177\) −16.2233 −1.21942
\(178\) 0 0
\(179\) 7.67409 0.573588 0.286794 0.957992i \(-0.407410\pi\)
0.286794 + 0.957992i \(0.407410\pi\)
\(180\) 0 0
\(181\) −1.75889 + 3.04648i −0.130737 + 0.226443i −0.923961 0.382487i \(-0.875068\pi\)
0.793224 + 0.608930i \(0.208401\pi\)
\(182\) 0 0
\(183\) 8.00723 + 13.8689i 0.591911 + 1.02522i
\(184\) 0 0
\(185\) 3.93630 + 4.63741i 0.289402 + 0.340949i
\(186\) 0 0
\(187\) 9.97704 + 17.2807i 0.729593 + 1.26369i
\(188\) 0 0
\(189\) −1.01574 + 1.75931i −0.0738840 + 0.127971i
\(190\) 0 0
\(191\) −17.2733 −1.24986 −0.624928 0.780683i \(-0.714872\pi\)
−0.624928 + 0.780683i \(0.714872\pi\)
\(192\) 0 0
\(193\) −4.09593 −0.294832 −0.147416 0.989075i \(-0.547096\pi\)
−0.147416 + 0.989075i \(0.547096\pi\)
\(194\) 0 0
\(195\) 6.74111 0.482741
\(196\) 0 0
\(197\) −9.95075 17.2352i −0.708962 1.22796i −0.965243 0.261355i \(-0.915831\pi\)
0.256281 0.966602i \(-0.417503\pi\)
\(198\) 0 0
\(199\) −8.51777 −0.603809 −0.301905 0.953338i \(-0.597622\pi\)
−0.301905 + 0.953338i \(0.597622\pi\)
\(200\) 0 0
\(201\) −11.2891 19.5533i −0.796270 1.37918i
\(202\) 0 0
\(203\) −1.70964 + 2.96118i −0.119993 + 0.207834i
\(204\) 0 0
\(205\) 0.322590 + 0.558743i 0.0225307 + 0.0390243i
\(206\) 0 0
\(207\) −2.99149 5.18141i −0.207923 0.360133i
\(208\) 0 0
\(209\) 0.258887 0.448406i 0.0179076 0.0310169i
\(210\) 0 0
\(211\) −24.1919 −1.66544 −0.832718 0.553697i \(-0.813217\pi\)
−0.832718 + 0.553697i \(0.813217\pi\)
\(212\) 0 0
\(213\) 5.93426 + 10.2784i 0.406609 + 0.704267i
\(214\) 0 0
\(215\) 1.74111 3.01570i 0.118743 0.205669i
\(216\) 0 0
\(217\) −1.08148 + 1.87317i −0.0734155 + 0.127159i
\(218\) 0 0
\(219\) −13.4508 + 23.2974i −0.908918 + 1.57429i
\(220\) 0 0
\(221\) 21.1670 1.42385
\(222\) 0 0
\(223\) 15.1104 1.01187 0.505933 0.862573i \(-0.331148\pi\)
0.505933 + 0.862573i \(0.331148\pi\)
\(224\) 0 0
\(225\) 3.48223 6.03139i 0.232148 0.402093i
\(226\) 0 0
\(227\) −8.82982 + 15.2937i −0.586056 + 1.01508i 0.408687 + 0.912674i \(0.365987\pi\)
−0.994743 + 0.102404i \(0.967347\pi\)
\(228\) 0 0
\(229\) −13.1282 + 22.7386i −0.867533 + 1.50261i −0.00302375 + 0.999995i \(0.500962\pi\)
−0.864510 + 0.502616i \(0.832371\pi\)
\(230\) 0 0
\(231\) 2.35482 + 4.07867i 0.154936 + 0.268357i
\(232\) 0 0
\(233\) 21.8411 1.43086 0.715430 0.698685i \(-0.246231\pi\)
0.715430 + 0.698685i \(0.246231\pi\)
\(234\) 0 0
\(235\) 4.89556 8.47936i 0.319351 0.553132i
\(236\) 0 0
\(237\) −13.6439 23.6319i −0.886266 1.53506i
\(238\) 0 0
\(239\) −8.20760 14.2160i −0.530906 0.919556i −0.999350 0.0360623i \(-0.988519\pi\)
0.468444 0.883493i \(-0.344815\pi\)
\(240\) 0 0
\(241\) 2.06574 3.57797i 0.133066 0.230477i −0.791791 0.610792i \(-0.790851\pi\)
0.924857 + 0.380315i \(0.124184\pi\)
\(242\) 0 0
\(243\) 8.07297 + 13.9828i 0.517881 + 0.896996i
\(244\) 0 0
\(245\) 6.45075 0.412123
\(246\) 0 0
\(247\) −0.274624 0.475663i −0.0174739 0.0302657i
\(248\) 0 0
\(249\) 18.2233 1.15486
\(250\) 0 0
\(251\) −11.1563 −0.704180 −0.352090 0.935966i \(-0.614529\pi\)
−0.352090 + 0.935966i \(0.614529\pi\)
\(252\) 0 0
\(253\) 10.0289 0.630512
\(254\) 0 0
\(255\) −7.44352 + 12.8926i −0.466132 + 0.807364i
\(256\) 0 0
\(257\) 7.51445 + 13.0154i 0.468739 + 0.811879i 0.999362 0.0357287i \(-0.0113752\pi\)
−0.530623 + 0.847608i \(0.678042\pi\)
\(258\) 0 0
\(259\) 2.91724 + 3.43684i 0.181268 + 0.213555i
\(260\) 0 0
\(261\) 4.01649 + 6.95677i 0.248615 + 0.430613i
\(262\) 0 0
\(263\) 12.4665 21.5926i 0.768717 1.33146i −0.169542 0.985523i \(-0.554229\pi\)
0.938259 0.345933i \(-0.112438\pi\)
\(264\) 0 0
\(265\) −6.74111 −0.414103
\(266\) 0 0
\(267\) 34.2063 2.09339
\(268\) 0 0
\(269\) 14.1919 0.865293 0.432647 0.901564i \(-0.357580\pi\)
0.432647 + 0.901564i \(0.357580\pi\)
\(270\) 0 0
\(271\) 4.78389 + 8.28594i 0.290601 + 0.503335i 0.973952 0.226755i \(-0.0728116\pi\)
−0.683351 + 0.730090i \(0.739478\pi\)
\(272\) 0 0
\(273\) 4.99593 0.302367
\(274\) 0 0
\(275\) 5.83705 + 10.1101i 0.351987 + 0.609659i
\(276\) 0 0
\(277\) 3.41852 5.92105i 0.205399 0.355762i −0.744861 0.667220i \(-0.767484\pi\)
0.950260 + 0.311458i \(0.100817\pi\)
\(278\) 0 0
\(279\) 2.54074 + 4.40069i 0.152110 + 0.263462i
\(280\) 0 0
\(281\) −5.64186 9.77199i −0.336565 0.582948i 0.647219 0.762304i \(-0.275932\pi\)
−0.983784 + 0.179356i \(0.942599\pi\)
\(282\) 0 0
\(283\) 2.37056 4.10592i 0.140915 0.244072i −0.786926 0.617047i \(-0.788329\pi\)
0.927841 + 0.372975i \(0.121662\pi\)
\(284\) 0 0
\(285\) 0.386294 0.0228821
\(286\) 0 0
\(287\) 0.239076 + 0.414092i 0.0141122 + 0.0244430i
\(288\) 0 0
\(289\) −14.8726 + 25.7601i −0.874858 + 1.51530i
\(290\) 0 0
\(291\) 18.2963 31.6901i 1.07255 1.85771i
\(292\) 0 0
\(293\) 0.241113 0.417620i 0.0140860 0.0243976i −0.858896 0.512149i \(-0.828849\pi\)
0.872982 + 0.487752i \(0.162183\pi\)
\(294\) 0 0
\(295\) 7.45075 0.433800
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 5.31927 9.21325i 0.307621 0.532816i
\(300\) 0 0
\(301\) 1.29036 2.23497i 0.0743752 0.128822i
\(302\) 0 0
\(303\) −6.81408 + 11.8023i −0.391459 + 0.678026i
\(304\) 0 0
\(305\) −3.67741 6.36946i −0.210568 0.364714i
\(306\) 0 0
\(307\) 3.80814 0.217342 0.108671 0.994078i \(-0.465341\pi\)
0.108671 + 0.994078i \(0.465341\pi\)
\(308\) 0 0
\(309\) −21.9830 + 38.0756i −1.25057 + 2.16605i
\(310\) 0 0
\(311\) −13.4350 23.2701i −0.761830 1.31953i −0.941906 0.335875i \(-0.890968\pi\)
0.180077 0.983653i \(-0.442365\pi\)
\(312\) 0 0
\(313\) −9.38705 16.2588i −0.530587 0.919004i −0.999363 0.0356870i \(-0.988638\pi\)
0.468776 0.883317i \(-0.344695\pi\)
\(314\) 0 0
\(315\) −0.645181 + 1.11749i −0.0363518 + 0.0629632i
\(316\) 0 0
\(317\) −9.90075 17.1486i −0.556081 0.963161i −0.997819 0.0660167i \(-0.978971\pi\)
0.441737 0.897145i \(-0.354362\pi\)
\(318\) 0 0
\(319\) −13.4652 −0.753907
\(320\) 0 0
\(321\) 14.6439 + 25.3640i 0.817343 + 1.41568i
\(322\) 0 0
\(323\) 1.21296 0.0674908
\(324\) 0 0
\(325\) 12.3837 0.686926
\(326\) 0 0
\(327\) 14.1145 0.780531
\(328\) 0 0
\(329\) 3.62816 6.28416i 0.200027 0.346457i
\(330\) 0 0
\(331\) 3.88833 + 6.73479i 0.213722 + 0.370177i 0.952876 0.303359i \(-0.0981080\pi\)
−0.739154 + 0.673536i \(0.764775\pi\)
\(332\) 0 0
\(333\) 10.4193 1.89821i 0.570973 0.104021i
\(334\) 0 0
\(335\) 5.18464 + 8.98005i 0.283267 + 0.490633i
\(336\) 0 0
\(337\) −7.29112 + 12.6286i −0.397172 + 0.687923i −0.993376 0.114911i \(-0.963342\pi\)
0.596203 + 0.802833i \(0.296675\pi\)
\(338\) 0 0
\(339\) 20.9330 1.13692
\(340\) 0 0
\(341\) −8.51777 −0.461263
\(342\) 0 0
\(343\) 9.96853 0.538250
\(344\) 0 0
\(345\) 3.74111 + 6.47980i 0.201415 + 0.348861i
\(346\) 0 0
\(347\) −3.85406 −0.206897 −0.103449 0.994635i \(-0.532988\pi\)
−0.103449 + 0.994635i \(0.532988\pi\)
\(348\) 0 0
\(349\) −8.11371 14.0534i −0.434317 0.752259i 0.562923 0.826509i \(-0.309677\pi\)
−0.997240 + 0.0742508i \(0.976343\pi\)
\(350\) 0 0
\(351\) −4.24315 + 7.34935i −0.226483 + 0.392279i
\(352\) 0 0
\(353\) 11.4685 + 19.8641i 0.610408 + 1.05726i 0.991172 + 0.132585i \(0.0423278\pi\)
−0.380764 + 0.924672i \(0.624339\pi\)
\(354\) 0 0
\(355\) −2.72538 4.72049i −0.144648 0.250538i
\(356\) 0 0
\(357\) −5.51649 + 9.55484i −0.291964 + 0.505696i
\(358\) 0 0
\(359\) −37.4193 −1.97491 −0.987457 0.157888i \(-0.949531\pi\)
−0.987457 + 0.157888i \(0.949531\pi\)
\(360\) 0 0
\(361\) 9.48426 + 16.4272i 0.499172 + 0.864591i
\(362\) 0 0
\(363\) 2.70241 4.68071i 0.141840 0.245674i
\(364\) 0 0
\(365\) 6.17741 10.6996i 0.323340 0.560042i
\(366\) 0 0
\(367\) −3.88833 + 6.73479i −0.202969 + 0.351553i −0.949484 0.313816i \(-0.898392\pi\)
0.746515 + 0.665369i \(0.231726\pi\)
\(368\) 0 0
\(369\) 1.12333 0.0584783
\(370\) 0 0
\(371\) −4.99593 −0.259376
\(372\) 0 0
\(373\) −5.69186 + 9.85860i −0.294714 + 0.510459i −0.974918 0.222563i \(-0.928558\pi\)
0.680205 + 0.733022i \(0.261891\pi\)
\(374\) 0 0
\(375\) −9.79834 + 16.9712i −0.505984 + 0.876390i
\(376\) 0 0
\(377\) −7.14186 + 12.3701i −0.367825 + 0.637091i
\(378\) 0 0
\(379\) 0.756850 + 1.31090i 0.0388768 + 0.0673365i 0.884809 0.465954i \(-0.154289\pi\)
−0.845932 + 0.533290i \(0.820955\pi\)
\(380\) 0 0
\(381\) 11.9685 0.613166
\(382\) 0 0
\(383\) 11.2431 19.4737i 0.574498 0.995060i −0.421598 0.906783i \(-0.638531\pi\)
0.996096 0.0882770i \(-0.0281361\pi\)
\(384\) 0 0
\(385\) −1.08148 1.87317i −0.0551172 0.0954658i
\(386\) 0 0
\(387\) −3.03147 5.25067i −0.154098 0.266906i
\(388\) 0 0
\(389\) 10.2241 17.7086i 0.518382 0.897864i −0.481390 0.876507i \(-0.659868\pi\)
0.999772 0.0213575i \(-0.00679883\pi\)
\(390\) 0 0
\(391\) 11.7471 + 20.3465i 0.594074 + 1.02897i
\(392\) 0 0
\(393\) 1.51370 0.0763561
\(394\) 0 0
\(395\) 6.26611 + 10.8532i 0.315282 + 0.546085i
\(396\) 0 0
\(397\) 22.4508 1.12677 0.563385 0.826194i \(-0.309499\pi\)
0.563385 + 0.826194i \(0.309499\pi\)
\(398\) 0 0
\(399\) 0.286287 0.0143323
\(400\) 0 0
\(401\) −3.64518 −0.182032 −0.0910158 0.995849i \(-0.529011\pi\)
−0.0910158 + 0.995849i \(0.529011\pi\)
\(402\) 0 0
\(403\) −4.51777 + 7.82501i −0.225046 + 0.389792i
\(404\) 0 0
\(405\) −5.59593 9.69244i −0.278064 0.481621i
\(406\) 0 0
\(407\) −5.97704 + 16.7162i −0.296271 + 0.828593i
\(408\) 0 0
\(409\) −14.8693 25.7543i −0.735238 1.27347i −0.954619 0.297831i \(-0.903737\pi\)
0.219380 0.975639i \(-0.429596\pi\)
\(410\) 0 0
\(411\) −2.45926 + 4.25957i −0.121306 + 0.210109i
\(412\) 0 0
\(413\) 5.52185 0.271712
\(414\) 0 0
\(415\) −8.36927 −0.410832
\(416\) 0 0
\(417\) 34.0974 1.66976
\(418\) 0 0
\(419\) 17.9843 + 31.1497i 0.878589 + 1.52176i 0.852890 + 0.522091i \(0.174848\pi\)
0.0256987 + 0.999670i \(0.491819\pi\)
\(420\) 0 0
\(421\) −38.3167 −1.86744 −0.933721 0.358002i \(-0.883458\pi\)
−0.933721 + 0.358002i \(0.883458\pi\)
\(422\) 0 0
\(423\) −8.52372 14.7635i −0.414437 0.717827i
\(424\) 0 0
\(425\) −13.6741 + 23.6842i −0.663291 + 1.14885i
\(426\) 0 0
\(427\) −2.72538 4.72049i −0.131890 0.228440i
\(428\) 0 0
\(429\) 9.83705 + 17.0383i 0.474937 + 0.822615i
\(430\) 0 0
\(431\) −5.74834 + 9.95642i −0.276888 + 0.479584i −0.970610 0.240659i \(-0.922636\pi\)
0.693722 + 0.720243i \(0.255970\pi\)
\(432\) 0 0
\(433\) −5.83297 −0.280315 −0.140157 0.990129i \(-0.544761\pi\)
−0.140157 + 0.990129i \(0.544761\pi\)
\(434\) 0 0
\(435\) −5.02296 8.70003i −0.240833 0.417135i
\(436\) 0 0
\(437\) 0.304816 0.527957i 0.0145813 0.0252556i
\(438\) 0 0
\(439\) −2.24315 + 3.88525i −0.107060 + 0.185433i −0.914578 0.404410i \(-0.867477\pi\)
0.807518 + 0.589843i \(0.200810\pi\)
\(440\) 0 0
\(441\) 5.61574 9.72675i 0.267416 0.463179i
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) −15.7096 −0.744708
\(446\) 0 0
\(447\) 2.45926 4.25957i 0.116319 0.201471i
\(448\) 0 0
\(449\) −1.16167 + 2.01208i −0.0548227 + 0.0949557i −0.892134 0.451770i \(-0.850793\pi\)
0.837312 + 0.546726i \(0.184126\pi\)
\(450\) 0 0
\(451\) −0.941487 + 1.63070i −0.0443329 + 0.0767868i
\(452\) 0 0
\(453\) −19.4350 33.6624i −0.913137 1.58160i
\(454\) 0 0
\(455\) −2.29444 −0.107565
\(456\) 0 0
\(457\) 4.19518 7.26627i 0.196242 0.339902i −0.751065 0.660229i \(-0.770459\pi\)
0.947307 + 0.320327i \(0.103793\pi\)
\(458\) 0 0
\(459\) −9.37056 16.2303i −0.437380 0.757565i
\(460\) 0 0
\(461\) −16.9987 29.4426i −0.791709 1.37128i −0.924908 0.380191i \(-0.875858\pi\)
0.133199 0.991089i \(-0.457475\pi\)
\(462\) 0 0
\(463\) −11.1117 + 19.2460i −0.516403 + 0.894436i 0.483416 + 0.875391i \(0.339396\pi\)
−0.999819 + 0.0190454i \(0.993937\pi\)
\(464\) 0 0
\(465\) −3.17741 5.50344i −0.147349 0.255216i
\(466\) 0 0
\(467\) 7.29036 0.337358 0.168679 0.985671i \(-0.446050\pi\)
0.168679 + 0.985671i \(0.446050\pi\)
\(468\) 0 0
\(469\) 3.84240 + 6.65523i 0.177426 + 0.307310i
\(470\) 0 0
\(471\) 20.3693 0.938567
\(472\) 0 0
\(473\) 10.1630 0.467293
\(474\) 0 0
\(475\) 0.709639 0.0325605
\(476\) 0 0
\(477\) −5.86852 + 10.1646i −0.268701 + 0.465404i
\(478\) 0 0
\(479\) −0.792398 1.37247i −0.0362056 0.0627099i 0.847355 0.531027i \(-0.178194\pi\)
−0.883560 + 0.468317i \(0.844860\pi\)
\(480\) 0 0
\(481\) 12.1865 + 14.3571i 0.555657 + 0.654628i
\(482\) 0 0
\(483\) 2.77259 + 4.80226i 0.126157 + 0.218510i
\(484\) 0 0
\(485\) −8.40279 + 14.5541i −0.381551 + 0.660865i
\(486\) 0 0
\(487\) −34.7845 −1.57624 −0.788118 0.615525i \(-0.788944\pi\)
−0.788118 + 0.615525i \(0.788944\pi\)
\(488\) 0 0
\(489\) 29.2878 1.32444
\(490\) 0 0
\(491\) 14.8267 0.669118 0.334559 0.942375i \(-0.391413\pi\)
0.334559 + 0.942375i \(0.391413\pi\)
\(492\) 0 0
\(493\) −15.7721 27.3180i −0.710338 1.23034i
\(494\) 0 0
\(495\) −5.08148 −0.228395
\(496\) 0 0
\(497\) −2.01981 3.49842i −0.0906009 0.156925i
\(498\) 0 0
\(499\) −5.39352 + 9.34185i −0.241447 + 0.418199i −0.961127 0.276108i \(-0.910955\pi\)
0.719680 + 0.694306i \(0.244289\pi\)
\(500\) 0 0
\(501\) 2.14314 + 3.71203i 0.0957486 + 0.165841i
\(502\) 0 0
\(503\) −16.2806 28.1988i −0.725915 1.25732i −0.958596 0.284768i \(-0.908083\pi\)
0.232682 0.972553i \(-0.425250\pi\)
\(504\) 0 0
\(505\) 3.12944 5.42036i 0.139258 0.241203i
\(506\) 0 0
\(507\) −7.43630 −0.330258
\(508\) 0 0
\(509\) −10.9363 18.9422i −0.484743 0.839599i 0.515104 0.857128i \(-0.327753\pi\)
−0.999846 + 0.0175288i \(0.994420\pi\)
\(510\) 0 0
\(511\) 4.57816 7.92960i 0.202526 0.350785i
\(512\) 0 0
\(513\) −0.243150 + 0.421148i −0.0107353 + 0.0185941i
\(514\) 0 0
\(515\) 10.0959 17.4867i 0.444880 0.770555i
\(516\) 0 0
\(517\) 28.5756 1.25675
\(518\) 0 0
\(519\) −32.3063 −1.41809
\(520\) 0 0
\(521\) 18.8672 32.6790i 0.826589 1.43169i −0.0741104 0.997250i \(-0.523612\pi\)
0.900699 0.434444i \(-0.143055\pi\)
\(522\) 0 0
\(523\) 21.6669 37.5281i 0.947426 1.64099i 0.196606 0.980483i \(-0.437008\pi\)
0.750820 0.660507i \(-0.229659\pi\)
\(524\) 0 0
\(525\) −3.22741 + 5.59004i −0.140856 + 0.243969i
\(526\) 0 0
\(527\) −9.97704 17.2807i −0.434606 0.752761i
\(528\) 0 0
\(529\) −11.1919 −0.486603
\(530\) 0 0
\(531\) 6.48630 11.2346i 0.281481 0.487540i
\(532\) 0 0
\(533\) 0.998718 + 1.72983i 0.0432593 + 0.0749273i
\(534\) 0 0
\(535\) −6.72538 11.6487i −0.290763 0.503617i
\(536\) 0 0
\(537\) −8.35482 + 14.4710i −0.360537 + 0.624469i
\(538\) 0 0
\(539\) 9.41333 + 16.3044i 0.405461 + 0.702279i
\(540\) 0 0
\(541\) 16.1959 0.696318 0.348159 0.937436i \(-0.386807\pi\)
0.348159 + 0.937436i \(0.386807\pi\)
\(542\) 0 0
\(543\) −3.82982 6.63344i −0.164353 0.284668i
\(544\) 0 0
\(545\) −6.48223 −0.277668
\(546\) 0 0
\(547\) 16.0459 0.686074 0.343037 0.939322i \(-0.388544\pi\)
0.343037 + 0.939322i \(0.388544\pi\)
\(548\) 0 0
\(549\) −12.8056 −0.546528
\(550\) 0 0
\(551\) −0.409258 + 0.708856i −0.0174350 + 0.0301983i
\(552\) 0 0
\(553\) 4.64390 + 8.04347i 0.197479 + 0.342043i
\(554\) 0 0
\(555\) −13.0302 + 2.37387i −0.553101 + 0.100765i
\(556\) 0 0
\(557\) 15.2556 + 26.4234i 0.646399 + 1.11960i 0.983976 + 0.178298i \(0.0570592\pi\)
−0.337577 + 0.941298i \(0.609607\pi\)
\(558\) 0 0
\(559\) 5.39037 9.33639i 0.227988 0.394887i
\(560\) 0 0
\(561\) −43.4482 −1.83438
\(562\) 0 0
\(563\) 31.1104 1.31115 0.655573 0.755132i \(-0.272427\pi\)
0.655573 + 0.755132i \(0.272427\pi\)
\(564\) 0 0
\(565\) −9.61371 −0.404452
\(566\) 0 0
\(567\) −4.14722 7.18319i −0.174167 0.301666i
\(568\) 0 0
\(569\) −18.4508 −0.773496 −0.386748 0.922185i \(-0.626402\pi\)
−0.386748 + 0.922185i \(0.626402\pi\)
\(570\) 0 0
\(571\) −3.07425 5.32476i −0.128653 0.222834i 0.794502 0.607262i \(-0.207732\pi\)
−0.923155 + 0.384428i \(0.874399\pi\)
\(572\) 0 0
\(573\) 18.8056 32.5722i 0.785614 1.36072i
\(574\) 0 0
\(575\) 6.87259 + 11.9037i 0.286607 + 0.496418i
\(576\) 0 0
\(577\) −1.72538 2.98844i −0.0718283 0.124410i 0.827874 0.560914i \(-0.189550\pi\)
−0.899703 + 0.436503i \(0.856217\pi\)
\(578\) 0 0
\(579\) 4.45926 7.72367i 0.185321 0.320985i
\(580\) 0 0
\(581\) −6.20258 −0.257326
\(582\) 0 0
\(583\) −9.83705 17.0383i −0.407409 0.705653i
\(584\) 0 0
\(585\) −2.69518 + 4.66820i −0.111432 + 0.193006i
\(586\) 0 0
\(587\) 6.91130 11.9707i 0.285260 0.494084i −0.687412 0.726267i \(-0.741253\pi\)
0.972672 + 0.232183i \(0.0745868\pi\)
\(588\) 0 0
\(589\) −0.258887 + 0.448406i −0.0106673 + 0.0184762i
\(590\) 0 0
\(591\) 43.3337 1.78251
\(592\) 0 0
\(593\) −32.6715 −1.34166 −0.670829 0.741612i \(-0.734062\pi\)
−0.670829 + 0.741612i \(0.734062\pi\)
\(594\) 0 0
\(595\) 2.53351 4.38817i 0.103864 0.179897i
\(596\) 0 0
\(597\) 9.27334 16.0619i 0.379533 0.657370i
\(598\) 0 0
\(599\) 7.71687 13.3660i 0.315303 0.546120i −0.664199 0.747556i \(-0.731227\pi\)
0.979502 + 0.201436i \(0.0645607\pi\)
\(600\) 0 0
\(601\) −0.744432 1.28939i −0.0303660 0.0525955i 0.850443 0.526067i \(-0.176334\pi\)
−0.880809 + 0.473472i \(0.843001\pi\)
\(602\) 0 0
\(603\) 18.0541 0.735219
\(604\) 0 0
\(605\) −1.24111 + 2.14967i −0.0504584 + 0.0873965i
\(606\) 0 0
\(607\) −3.12425 5.41137i −0.126810 0.219641i 0.795629 0.605784i \(-0.207140\pi\)
−0.922439 + 0.386143i \(0.873807\pi\)
\(608\) 0 0
\(609\) −3.72258 6.44770i −0.150847 0.261274i
\(610\) 0 0
\(611\) 15.1563 26.2515i 0.613159 1.06202i
\(612\) 0 0
\(613\) 13.8693 + 24.0223i 0.560175 + 0.970251i 0.997481 + 0.0709383i \(0.0225993\pi\)
−0.437306 + 0.899313i \(0.644067\pi\)
\(614\) 0 0
\(615\) −1.40482 −0.0566479
\(616\) 0 0
\(617\) −3.72538 6.45254i −0.149978 0.259769i 0.781241 0.624229i \(-0.214587\pi\)
−0.931219 + 0.364460i \(0.881254\pi\)
\(618\) 0 0
\(619\) −16.1919 −0.650806 −0.325403 0.945575i \(-0.605500\pi\)
−0.325403 + 0.945575i \(0.605500\pi\)
\(620\) 0 0
\(621\) −9.41928 −0.377983
\(622\) 0 0
\(623\) −11.6426 −0.466452
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0.563703 + 0.976363i 0.0225121 + 0.0389922i
\(628\) 0 0
\(629\) −40.9147 + 7.45394i −1.63137 + 0.297208i
\(630\) 0 0
\(631\) −0.393521 0.681598i −0.0156658 0.0271340i 0.858086 0.513506i \(-0.171653\pi\)
−0.873752 + 0.486372i \(0.838320\pi\)
\(632\) 0 0
\(633\) 26.3378 45.6184i 1.04683 1.81317i
\(634\) 0 0
\(635\) −5.49668 −0.218129
\(636\) 0 0
\(637\) 19.9711 0.791283
\(638\) 0 0
\(639\) −9.49037 −0.375433
\(640\) 0 0
\(641\) 10.1741 + 17.6220i 0.401852 + 0.696029i 0.993950 0.109838i \(-0.0350332\pi\)
−0.592097 + 0.805867i \(0.701700\pi\)
\(642\) 0 0
\(643\) −0.429658 −0.0169441 −0.00847203 0.999964i \(-0.502697\pi\)
−0.00847203 + 0.999964i \(0.502697\pi\)
\(644\) 0 0
\(645\) 3.79112 + 6.56641i 0.149275 + 0.258552i
\(646\) 0 0
\(647\) 5.40610 9.36365i 0.212536 0.368123i −0.739972 0.672638i \(-0.765161\pi\)
0.952507 + 0.304515i \(0.0984944\pi\)
\(648\) 0 0
\(649\) 10.8726 + 18.8319i 0.426787 + 0.739216i
\(650\) 0 0
\(651\) −2.35482 4.07867i −0.0922926 0.159856i
\(652\) 0 0
\(653\) 2.12816 3.68608i 0.0832814 0.144248i −0.821376 0.570387i \(-0.806793\pi\)
0.904658 + 0.426139i \(0.140127\pi\)
\(654\) 0 0
\(655\) −0.695184 −0.0271631
\(656\) 0 0
\(657\) −10.7556 18.6292i −0.419615 0.726794i
\(658\) 0 0
\(659\) −22.5980 + 39.1408i −0.880292 + 1.52471i −0.0292754 + 0.999571i \(0.509320\pi\)
−0.851017 + 0.525139i \(0.824013\pi\)
\(660\) 0 0
\(661\) 3.01777 5.22694i 0.117378 0.203304i −0.801350 0.598196i \(-0.795884\pi\)
0.918728 + 0.394891i \(0.129218\pi\)
\(662\) 0 0
\(663\) −23.0446 + 39.9145i −0.894980 + 1.55015i
\(664\) 0 0
\(665\) −0.131481 −0.00509860
\(666\) 0 0
\(667\) −15.8541 −0.613872
\(668\) 0 0
\(669\) −16.4508 + 28.4935i −0.636023 + 1.10162i
\(670\) 0 0
\(671\) 10.7326 18.5894i 0.414328 0.717636i
\(672\) 0 0
\(673\) 23.9317 41.4509i 0.922499 1.59782i 0.126964 0.991907i \(-0.459477\pi\)
0.795535 0.605908i \(-0.207190\pi\)
\(674\) 0 0
\(675\) −5.48223 9.49549i −0.211011 0.365482i
\(676\) 0 0
\(677\) 45.0893 1.73292 0.866461 0.499244i \(-0.166389\pi\)
0.866461 + 0.499244i \(0.166389\pi\)
\(678\) 0 0
\(679\) −6.22741 + 10.7862i −0.238986 + 0.413936i
\(680\) 0 0
\(681\) −19.2261 33.3006i −0.736747 1.27608i
\(682\) 0 0
\(683\) −4.01574 6.95546i −0.153658 0.266143i 0.778912 0.627134i \(-0.215772\pi\)
−0.932570 + 0.360990i \(0.882439\pi\)
\(684\) 0 0
\(685\) 1.12944 1.95625i 0.0431538 0.0747446i
\(686\) 0 0
\(687\) −28.5854 49.5113i −1.09060 1.88898i
\(688\) 0 0
\(689\) −20.8700 −0.795085
\(690\) 0 0
\(691\) 8.78389 + 15.2141i 0.334155 + 0.578773i 0.983322 0.181872i \(-0.0582158\pi\)
−0.649167 + 0.760646i \(0.724882\pi\)
\(692\) 0 0
\(693\) −3.76595 −0.143057
\(694\) 0 0
\(695\) −15.6596 −0.594004
\(696\) 0 0
\(697\) −4.41113 −0.167083
\(698\) 0 0
\(699\) −23.7785 + 41.1856i −0.899387 + 1.55778i
\(700\) 0 0
\(701\) 2.01574 + 3.49136i 0.0761333 + 0.131867i 0.901579 0.432615i \(-0.142409\pi\)
−0.825445 + 0.564482i \(0.809076\pi\)
\(702\) 0 0
\(703\) 0.698337 + 0.822721i 0.0263383 + 0.0310295i
\(704\) 0 0
\(705\) 10.6596 + 18.4630i 0.401465 + 0.695358i
\(706\) 0 0
\(707\) 2.31927 4.01710i 0.0872252 0.151078i
\(708\) 0 0
\(709\) 9.15632 0.343873 0.171936 0.985108i \(-0.444998\pi\)
0.171936 + 0.985108i \(0.444998\pi\)
\(710\) 0 0
\(711\) 21.8200 0.818315
\(712\) 0 0
\(713\) −10.0289 −0.375586
\(714\) 0 0
\(715\) −4.51777 7.82501i −0.168955 0.292639i
\(716\) 0 0
\(717\) 35.7426 1.33483
\(718\) 0 0
\(719\) 9.11761 + 15.7922i 0.340030 + 0.588949i 0.984438 0.175733i \(-0.0562296\pi\)
−0.644408 + 0.764682i \(0.722896\pi\)
\(720\) 0 0
\(721\) 7.48223 12.9596i 0.278653 0.482641i
\(722\) 0 0
\(723\) 4.49796 + 7.79070i 0.167281 + 0.289739i
\(724\) 0 0
\(725\) −9.22741 15.9823i −0.342698 0.593570i
\(726\) 0 0
\(727\) −3.88833 + 6.73479i −0.144210 + 0.249779i −0.929078 0.369884i \(-0.879397\pi\)
0.784868 + 0.619663i \(0.212731\pi\)
\(728\) 0 0
\(729\) −1.58072 −0.0585453
\(730\) 0 0
\(731\) 11.9041 + 20.6185i 0.440288 + 0.762601i
\(732\) 0 0
\(733\) −5.41649 + 9.38163i −0.200062 + 0.346518i −0.948548 0.316632i \(-0.897448\pi\)
0.748486 + 0.663151i \(0.230781\pi\)
\(734\) 0 0
\(735\) −7.02296 + 12.1641i −0.259046 + 0.448681i
\(736\) 0 0
\(737\) −15.1315 + 26.2085i −0.557375 + 0.965402i
\(738\) 0 0
\(739\) 31.9119 1.17390 0.586949 0.809624i \(-0.300329\pi\)
0.586949 + 0.809624i \(0.300329\pi\)
\(740\) 0 0
\(741\) 1.19594 0.0439339
\(742\) 0 0
\(743\) −13.5395 + 23.4510i −0.496714 + 0.860335i −0.999993 0.00378964i \(-0.998794\pi\)
0.503278 + 0.864124i \(0.332127\pi\)
\(744\) 0 0
\(745\) −1.12944 + 1.95625i −0.0413796 + 0.0716716i
\(746\) 0 0
\(747\) −7.28593 + 12.6196i −0.266578 + 0.461727i
\(748\) 0 0
\(749\) −4.98426 8.63300i −0.182121 0.315443i
\(750\) 0 0
\(751\) 6.77259 0.247135 0.123568 0.992336i \(-0.460566\pi\)
0.123568 + 0.992336i \(0.460566\pi\)
\(752\) 0 0
\(753\) 12.1459 21.0374i 0.442622 0.766645i
\(754\) 0 0
\(755\) 8.92575 + 15.4599i 0.324841 + 0.562642i
\(756\) 0 0
\(757\) 12.2241 + 21.1728i 0.444292 + 0.769537i 0.998003 0.0631726i \(-0.0201219\pi\)
−0.553710 + 0.832709i \(0.686789\pi\)
\(758\) 0 0
\(759\) −10.9185 + 18.9114i −0.396317 + 0.686442i
\(760\) 0 0
\(761\) 0.595932 + 1.03218i 0.0216025 + 0.0374167i 0.876625 0.481175i \(-0.159790\pi\)
−0.855022 + 0.518592i \(0.826457\pi\)
\(762\) 0 0
\(763\) −4.80406 −0.173919
\(764\) 0 0
\(765\) −5.95203 10.3092i −0.215196 0.372731i
\(766\) 0 0
\(767\) 23.0670 0.832902
\(768\) 0 0
\(769\) 37.7741 1.36217 0.681084 0.732205i \(-0.261509\pi\)
0.681084 + 0.732205i \(0.261509\pi\)
\(770\) 0 0
\(771\) −32.7241 −1.17853
\(772\) 0 0
\(773\) −23.6919 + 41.0355i −0.852137 + 1.47594i 0.0271386 + 0.999632i \(0.491360\pi\)
−0.879276 + 0.476313i \(0.841973\pi\)
\(774\) 0 0
\(775\) −5.83705 10.1101i −0.209673 0.363164i
\(776\) 0 0
\(777\) −9.65684 + 1.75931i −0.346437 + 0.0631148i
\(778\) 0 0
\(779\) 0.0572306 + 0.0991264i 0.00205050 + 0.00355157i
\(780\) 0 0
\(781\) 7.95407 13.7769i 0.284619 0.492975i
\(782\) 0 0
\(783\) 12.6467 0.451956
\(784\) 0 0
\(785\) −9.35482 −0.333888
\(786\) 0 0
\(787\) 28.0578 1.00015 0.500077 0.865981i \(-0.333305\pi\)
0.500077 + 0.865981i \(0.333305\pi\)
\(788\) 0 0
\(789\) 27.1447 + 47.0159i 0.966375 + 1.67381i
\(790\) 0 0
\(791\) −7.12484 −0.253330
\(792\) 0 0
\(793\) −11.3850 19.7194i −0.404294 0.700257i
\(794\) 0 0
\(795\) 7.33908 12.7117i 0.260290 0.450836i
\(796\) 0 0
\(797\) −4.43094 7.67461i −0.156952 0.271849i 0.776816 0.629728i \(-0.216833\pi\)
−0.933768 + 0.357879i \(0.883500\pi\)
\(798\) 0 0
\(799\) 33.4712 + 57.9737i 1.18412 + 2.05096i
\(800\) 0 0
\(801\) −13.6761 + 23.6877i −0.483222 + 0.836965i
\(802\) 0 0
\(803\) 36.0578 1.27245
\(804\) 0 0
\(805\) −1.27334 2.20549i −0.0448794 0.0777334i
\(806\) 0 0
\(807\) −15.4508 + 26.7615i −0.543892 + 0.942049i
\(808\) 0 0
\(809\) 22.2076 38.4647i 0.780778 1.35235i −0.150712 0.988578i \(-0.548156\pi\)
0.931489 0.363769i \(-0.118510\pi\)
\(810\) 0 0
\(811\) 18.0487 31.2613i 0.633776 1.09773i −0.352997 0.935625i \(-0.614837\pi\)
0.986773 0.162108i \(-0.0518294\pi\)
\(812\) 0 0
\(813\) −20.8330 −0.730644
\(814\) 0 0
\(815\) −13.4508 −0.471159
\(816\) 0 0
\(817\) 0.308890 0.535014i 0.0108067 0.0187178i
\(818\) 0 0
\(819\) −1.99744 + 3.45966i −0.0697960 + 0.120890i
\(820\) 0 0
\(821\) −11.8883 + 20.5912i −0.414906 + 0.718638i −0.995419 0.0956134i \(-0.969519\pi\)
0.580513 + 0.814251i \(0.302852\pi\)
\(822\) 0 0
\(823\) −22.5395 39.0395i −0.785676 1.36083i −0.928594 0.371096i \(-0.878982\pi\)
0.142918 0.989734i \(-0.454351\pi\)
\(824\) 0 0
\(825\) −25.4193 −0.884986
\(826\) 0 0
\(827\) −26.5980 + 46.0690i −0.924902 + 1.60198i −0.133183 + 0.991091i \(0.542520\pi\)
−0.791719 + 0.610886i \(0.790813\pi\)
\(828\) 0 0
\(829\) 17.9028 + 31.0085i 0.621789 + 1.07697i 0.989152 + 0.146893i \(0.0469274\pi\)
−0.367363 + 0.930078i \(0.619739\pi\)
\(830\) 0 0
\(831\) 7.44352 + 12.8926i 0.258213 + 0.447238i
\(832\) 0 0
\(833\) −22.0520 + 38.1953i −0.764058 + 1.32339i
\(834\) 0 0
\(835\) −0.984263 1.70479i −0.0340618 0.0589968i
\(836\) 0 0
\(837\) 8.00000 0.276520
\(838\) 0 0
\(839\) −4.23057 7.32756i −0.146055 0.252975i 0.783711 0.621126i \(-0.213324\pi\)
−0.929766 + 0.368151i \(0.879991\pi\)
\(840\) 0 0
\(841\) −7.71371 −0.265990
\(842\) 0 0
\(843\) 24.5693 0.846211
\(844\) 0 0
\(845\) 3.41520 0.117487
\(846\) 0 0
\(847\) −0.919805 + 1.59315i −0.0316049 + 0.0547412i
\(848\) 0 0
\(849\) 5.16167 + 8.94028i 0.177148 + 0.306830i
\(850\) 0 0
\(851\) −7.03742 + 19.6819i −0.241240 + 0.674686i
\(852\) 0 0
\(853\) 5.01777 + 8.69104i 0.171805 + 0.297576i 0.939051 0.343778i \(-0.111707\pi\)
−0.767246 + 0.641353i \(0.778373\pi\)
\(854\) 0 0
\(855\) −0.154445 + 0.267507i −0.00528191 + 0.00914854i
\(856\) 0 0
\(857\) 42.6426 1.45664 0.728322 0.685235i \(-0.240301\pi\)
0.728322 + 0.685235i \(0.240301\pi\)
\(858\) 0 0
\(859\) −54.7045 −1.86649 −0.933247 0.359236i \(-0.883037\pi\)
−0.933247 + 0.359236i \(0.883037\pi\)
\(860\) 0 0
\(861\) −1.04113 −0.0354817
\(862\) 0 0
\(863\) 0.823873 + 1.42699i 0.0280449 + 0.0485753i 0.879707 0.475516i \(-0.157739\pi\)
−0.851662 + 0.524091i \(0.824405\pi\)
\(864\) 0 0
\(865\) 14.8370 0.504475
\(866\) 0 0
\(867\) −32.3837 56.0903i −1.09981 1.90493i
\(868\) 0 0
\(869\) −18.2878 + 31.6754i −0.620371 + 1.07451i
\(870\) 0 0
\(871\) 16.0513 + 27.8016i 0.543877 + 0.942023i
\(872\) 0 0
\(873\) 14.6302 + 25.3402i 0.495157 + 0.857637i
\(874\) 0 0
\(875\) 3.33501 5.77640i 0.112744 0.195278i
\(876\) 0 0
\(877\) −52.9056 −1.78649 −0.893247 0.449566i \(-0.851579\pi\)
−0.893247 + 0.449566i \(0.851579\pi\)
\(878\) 0 0
\(879\) 0.525002 + 0.909329i 0.0177079 + 0.0306709i
\(880\) 0 0
\(881\) 9.11371 15.7854i 0.307049 0.531824i −0.670667 0.741759i \(-0.733992\pi\)
0.977715 + 0.209935i \(0.0673253\pi\)
\(882\) 0 0
\(883\) 4.65648 8.06526i 0.156703 0.271418i −0.776975 0.629532i \(-0.783247\pi\)
0.933678 + 0.358114i \(0.116580\pi\)
\(884\) 0 0
\(885\) −8.11167 + 14.0498i −0.272671 + 0.472280i
\(886\) 0 0
\(887\) −17.6571 −0.592866 −0.296433 0.955054i \(-0.595797\pi\)
−0.296433 + 0.955054i \(0.595797\pi\)
\(888\) 0 0
\(889\) −4.07366 −0.136626
\(890\) 0 0
\(891\) 16.3319 28.2876i 0.547138 0.947670i
\(892\) 0 0
\(893\) 0.868519 1.50432i 0.0290639 0.0503401i
\(894\) 0 0
\(895\) 3.83705 6.64596i 0.128258 0.222150i
\(896\) 0 0
\(897\) 11.5822 + 20.0610i 0.386719 + 0.669818i
\(898\) 0 0
\(899\) 13.4652 0.449090
\(900\) 0 0
\(901\) 23.0446 39.9145i 0.767728 1.32974i
\(902\) 0 0
\(903\) 2.80965 + 4.86645i 0.0934991 + 0.161945i
\(904\) 0 0
\(905\) 1.75889 + 3.04648i 0.0584674 + 0.101268i
\(906\) 0 0
\(907\) −7.37650 + 12.7765i −0.244933 + 0.424236i −0.962113 0.272652i \(-0.912099\pi\)
0.717180 + 0.696888i \(0.245433\pi\)
\(908\) 0 0
\(909\) −5.44871 9.43745i −0.180722 0.313020i
\(910\) 0 0
\(911\) 57.0053 1.88867 0.944334 0.328988i \(-0.106708\pi\)
0.944334 + 0.328988i \(0.106708\pi\)
\(912\) 0 0
\(913\) −12.2130 21.1535i −0.404190 0.700077i
\(914\) 0 0
\(915\) 16.0145 0.529422
\(916\) 0 0
\(917\) −0.515210 −0.0170137
\(918\) 0 0
\(919\) 14.4007 0.475037 0.237518 0.971383i \(-0.423666\pi\)
0.237518 + 0.971383i \(0.423666\pi\)
\(920\) 0 0
\(921\) −4.14594 + 7.18097i −0.136613 + 0.236621i
\(922\) 0 0
\(923\) −8.43758 14.6143i −0.277726 0.481036i
\(924\) 0 0
\(925\) −23.9371 + 4.36091i −0.787045 + 0.143386i
\(926\) 0 0
\(927\) −17.5782 30.4463i −0.577342 0.999986i
\(928\) 0 0
\(929\) −17.1782 + 29.7535i −0.563597 + 0.976179i 0.433581 + 0.901114i \(0.357250\pi\)
−0.997179 + 0.0750647i \(0.976084\pi\)
\(930\) 0 0
\(931\) 1.14443 0.0375070
\(932\) 0 0
\(933\) 58.5071 1.91544
\(934\) 0 0
\(935\) 19.9541 0.652568
\(936\) 0 0
\(937\) 23.9863 + 41.5455i 0.783598 + 1.35723i 0.929833 + 0.367982i \(0.119951\pi\)
−0.146235 + 0.989250i \(0.546715\pi\)
\(938\) 0 0
\(939\) 40.8789 1.33403
\(940\) 0 0
\(941\) 25.2385 + 43.7144i 0.822753 + 1.42505i 0.903624 + 0.428326i \(0.140896\pi\)
−0.0808712 + 0.996725i \(0.525770\pi\)
\(942\) 0 0
\(943\) −1.10852 + 1.92001i −0.0360982 + 0.0625240i
\(944\) 0 0
\(945\) 1.01574 + 1.75931i 0.0330419 + 0.0572303i
\(946\) 0 0
\(947\) 14.0802 + 24.3876i 0.457545 + 0.792491i 0.998831 0.0483478i \(-0.0153956\pi\)
−0.541286 + 0.840839i \(0.682062\pi\)
\(948\) 0 0
\(949\) 19.1248 33.1252i 0.620819 1.07529i
\(950\) 0 0
\(951\) 43.1160 1.39813
\(952\) 0 0
\(953\) 0.917240 + 1.58871i 0.0297123 + 0.0514633i 0.880499 0.474048i \(-0.157208\pi\)
−0.850787 + 0.525511i \(0.823874\pi\)
\(954\) 0 0
\(955\) −8.63667 + 14.9592i −0.279476 + 0.484067i
\(956\) 0 0
\(957\) 14.6596 25.3912i 0.473879 0.820782i
\(958\) 0 0
\(959\) 0.837045 1.44980i 0.0270296 0.0468166i
\(960\) 0 0
\(961\) −22.4822 −0.725233
\(962\) 0 0
\(963\) −23.4193 −0.754676
\(964\) 0 0
\(965\) −2.04797 + 3.54718i −0.0659264 + 0.114188i
\(966\) 0 0
\(967\) 15.8569 27.4649i 0.509922 0.883211i −0.490012 0.871716i \(-0.663008\pi\)
0.999934 0.0114952i \(-0.00365913\pi\)
\(968\) 0 0
\(969\) −1.32055 + 2.28727i −0.0424223 + 0.0734775i
\(970\) 0 0
\(971\) 4.40798 + 7.63484i 0.141459 + 0.245014i 0.928046 0.372465i \(-0.121487\pi\)
−0.786587 + 0.617479i \(0.788154\pi\)
\(972\) 0 0
\(973\) −11.6056 −0.372057
\(974\) 0 0
\(975\) −13.4822 + 23.3519i −0.431777 + 0.747859i
\(976\) 0 0
\(977\) −14.9698 25.9285i −0.478927 0.829525i 0.520781 0.853690i \(-0.325641\pi\)
−0.999708 + 0.0241649i \(0.992307\pi\)
\(978\) 0 0
\(979\) −22.9245 39.7063i −0.732669 1.26902i
\(980\) 0 0
\(981\) −5.64314 + 9.77421i −0.180172 + 0.312067i
\(982\) 0 0
\(983\) −20.7524 35.9442i −0.661899 1.14644i −0.980116 0.198425i \(-0.936417\pi\)
0.318217 0.948018i \(-0.396916\pi\)
\(984\) 0 0
\(985\) −19.9015 −0.634115
\(986\) 0 0
\(987\) 7.89999 + 13.6832i 0.251460 + 0.435541i
\(988\) 0 0
\(989\) 11.9660 0.380495
\(990\) 0 0
\(991\) 48.0660 1.52687 0.763433 0.645887i \(-0.223512\pi\)
0.763433 + 0.645887i \(0.223512\pi\)
\(992\) 0 0
\(993\) −16.9330 −0.537352
\(994\) 0 0
\(995\) −4.25889 + 7.37661i −0.135016 + 0.233854i
\(996\) 0 0
\(997\) −24.3180 42.1200i −0.770158 1.33395i −0.937476 0.348050i \(-0.886844\pi\)
0.167317 0.985903i \(-0.446490\pi\)
\(998\) 0 0
\(999\) 5.61371 15.7001i 0.177610 0.496729i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 592.2.i.f.433.1 6
4.3 odd 2 148.2.e.a.137.3 yes 6
12.11 even 2 1332.2.j.e.433.2 6
37.10 even 3 inner 592.2.i.f.417.1 6
148.11 odd 6 5476.2.a.g.1.1 3
148.47 odd 6 148.2.e.a.121.3 6
148.63 odd 6 5476.2.a.f.1.1 3
444.47 even 6 1332.2.j.e.1009.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
148.2.e.a.121.3 6 148.47 odd 6
148.2.e.a.137.3 yes 6 4.3 odd 2
592.2.i.f.417.1 6 37.10 even 3 inner
592.2.i.f.433.1 6 1.1 even 1 trivial
1332.2.j.e.433.2 6 12.11 even 2
1332.2.j.e.1009.2 6 444.47 even 6
5476.2.a.f.1.1 3 148.63 odd 6
5476.2.a.g.1.1 3 148.11 odd 6