Properties

Label 2-1344-4.3-c2-0-47
Degree $2$
Conductor $1344$
Sign $-1$
Analytic cond. $36.6213$
Root an. cond. $6.05155$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·3-s + 6.29·5-s + 2.64i·7-s − 2.99·9-s − 16.5i·11-s − 14.1·13-s − 10.8i·15-s − 20.4·17-s − 6.39i·19-s + 4.58·21-s + 29.0i·23-s + 14.5·25-s + 5.19i·27-s − 54.6·29-s − 14.7i·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 1.25·5-s + 0.377i·7-s − 0.333·9-s − 1.50i·11-s − 1.08·13-s − 0.726i·15-s − 1.20·17-s − 0.336i·19-s + 0.218·21-s + 1.26i·23-s + 0.583·25-s + 0.192i·27-s − 1.88·29-s − 0.475i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1344\)    =    \(2^{6} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(36.6213\)
Root analytic conductor: \(6.05155\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1344} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1344,\ (\ :1),\ -1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.6972980165\)
\(L(\frac12)\) \(\approx\) \(0.6972980165\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 1.73iT \)
7 \( 1 - 2.64iT \)
good5 \( 1 - 6.29T + 25T^{2} \)
11 \( 1 + 16.5iT - 121T^{2} \)
13 \( 1 + 14.1T + 169T^{2} \)
17 \( 1 + 20.4T + 289T^{2} \)
19 \( 1 + 6.39iT - 361T^{2} \)
23 \( 1 - 29.0iT - 529T^{2} \)
29 \( 1 + 54.6T + 841T^{2} \)
31 \( 1 + 14.7iT - 961T^{2} \)
37 \( 1 + 26.8T + 1.36e3T^{2} \)
41 \( 1 + 33.5T + 1.68e3T^{2} \)
43 \( 1 + 3.83iT - 1.84e3T^{2} \)
47 \( 1 + 27.4iT - 2.20e3T^{2} \)
53 \( 1 - 21.7T + 2.80e3T^{2} \)
59 \( 1 - 54.1iT - 3.48e3T^{2} \)
61 \( 1 - 35.7T + 3.72e3T^{2} \)
67 \( 1 + 95.4iT - 4.48e3T^{2} \)
71 \( 1 + 55.6iT - 5.04e3T^{2} \)
73 \( 1 - 130.T + 5.32e3T^{2} \)
79 \( 1 - 15.6iT - 6.24e3T^{2} \)
83 \( 1 + 49.4iT - 6.88e3T^{2} \)
89 \( 1 - 39.2T + 7.92e3T^{2} \)
97 \( 1 + 171.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.166990565096219587258027584737, −8.283190687872264232595832780215, −7.29031376756199167462765353891, −6.46871806662027178777662270397, −5.66588382451877625305889519182, −5.18101182989554213760701990290, −3.59592524127049180421950429163, −2.46463181534381209958310861604, −1.74326019648587161615052525785, −0.17113987515956676400818955415, 1.85004898980956121352778875709, 2.47488133900435770534824268457, 3.99764164683947346150407015579, 4.81493957910421931686239927879, 5.48693742897212465494284078196, 6.65683517283155025328272498895, 7.16072853250710587303704395880, 8.360304089005225183439381203463, 9.385883184492363308586961131566, 9.743018613429851354996227892334

Graph of the $Z$-function along the critical line