Properties

Label 1344.3.m.e.127.5
Level $1344$
Weight $3$
Character 1344.127
Analytic conductor $36.621$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,3,Mod(127,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1344.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.6213475300\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.5
Root \(1.10978 + 0.876576i\) of defining polynomial
Character \(\chi\) \(=\) 1344.127
Dual form 1344.3.m.e.127.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} +6.29204 q^{5} +2.64575i q^{7} -3.00000 q^{9} +O(q^{10})\) \(q-1.73205i q^{3} +6.29204 q^{5} +2.64575i q^{7} -3.00000 q^{9} -16.5803i q^{11} -14.1288 q^{13} -10.8981i q^{15} -20.4687 q^{17} -6.39258i q^{19} +4.58258 q^{21} +29.0945i q^{23} +14.5898 q^{25} +5.19615i q^{27} -54.6984 q^{29} -14.7296i q^{31} -28.7179 q^{33} +16.6472i q^{35} -26.8040 q^{37} +24.4718i q^{39} -33.5802 q^{41} -3.83239i q^{43} -18.8761 q^{45} -27.4693i q^{47} -7.00000 q^{49} +35.4528i q^{51} +21.7113 q^{53} -104.324i q^{55} -11.0723 q^{57} +54.1344i q^{59} +35.7188 q^{61} -7.93725i q^{63} -88.8991 q^{65} -95.4255i q^{67} +50.3932 q^{69} -55.6524i q^{71} +130.476 q^{73} -25.2702i q^{75} +43.8673 q^{77} +15.6309i q^{79} +9.00000 q^{81} -49.4495i q^{83} -128.790 q^{85} +94.7403i q^{87} +39.2530 q^{89} -37.3813i q^{91} -25.5125 q^{93} -40.2224i q^{95} -171.943 q^{97} +49.7408i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{5} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 8 q^{5} - 36 q^{9} + 24 q^{13} - 40 q^{17} + 180 q^{25} - 72 q^{29} + 88 q^{37} - 200 q^{41} + 24 q^{45} - 84 q^{49} - 104 q^{53} - 104 q^{61} + 176 q^{65} + 192 q^{69} + 312 q^{73} + 224 q^{77} + 108 q^{81} - 352 q^{85} - 552 q^{89} + 48 q^{93} - 264 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) 6.29204 1.25841 0.629204 0.777240i \(-0.283381\pi\)
0.629204 + 0.777240i \(0.283381\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 16.5803i − 1.50730i −0.657278 0.753649i \(-0.728292\pi\)
0.657278 0.753649i \(-0.271708\pi\)
\(12\) 0 0
\(13\) −14.1288 −1.08683 −0.543416 0.839463i \(-0.682869\pi\)
−0.543416 + 0.839463i \(0.682869\pi\)
\(14\) 0 0
\(15\) − 10.8981i − 0.726542i
\(16\) 0 0
\(17\) −20.4687 −1.20404 −0.602020 0.798481i \(-0.705637\pi\)
−0.602020 + 0.798481i \(0.705637\pi\)
\(18\) 0 0
\(19\) − 6.39258i − 0.336452i −0.985748 0.168226i \(-0.946196\pi\)
0.985748 0.168226i \(-0.0538038\pi\)
\(20\) 0 0
\(21\) 4.58258 0.218218
\(22\) 0 0
\(23\) 29.0945i 1.26498i 0.774568 + 0.632490i \(0.217967\pi\)
−0.774568 + 0.632490i \(0.782033\pi\)
\(24\) 0 0
\(25\) 14.5898 0.583591
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −54.6984 −1.88615 −0.943075 0.332579i \(-0.892081\pi\)
−0.943075 + 0.332579i \(0.892081\pi\)
\(30\) 0 0
\(31\) − 14.7296i − 0.475150i −0.971369 0.237575i \(-0.923647\pi\)
0.971369 0.237575i \(-0.0763525\pi\)
\(32\) 0 0
\(33\) −28.7179 −0.870238
\(34\) 0 0
\(35\) 16.6472i 0.475633i
\(36\) 0 0
\(37\) −26.8040 −0.724431 −0.362216 0.932094i \(-0.617980\pi\)
−0.362216 + 0.932094i \(0.617980\pi\)
\(38\) 0 0
\(39\) 24.4718i 0.627483i
\(40\) 0 0
\(41\) −33.5802 −0.819029 −0.409515 0.912304i \(-0.634302\pi\)
−0.409515 + 0.912304i \(0.634302\pi\)
\(42\) 0 0
\(43\) − 3.83239i − 0.0891253i −0.999007 0.0445627i \(-0.985811\pi\)
0.999007 0.0445627i \(-0.0141894\pi\)
\(44\) 0 0
\(45\) −18.8761 −0.419469
\(46\) 0 0
\(47\) − 27.4693i − 0.584453i −0.956349 0.292226i \(-0.905604\pi\)
0.956349 0.292226i \(-0.0943961\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 35.4528i 0.695153i
\(52\) 0 0
\(53\) 21.7113 0.409648 0.204824 0.978799i \(-0.434338\pi\)
0.204824 + 0.978799i \(0.434338\pi\)
\(54\) 0 0
\(55\) − 104.324i − 1.89679i
\(56\) 0 0
\(57\) −11.0723 −0.194250
\(58\) 0 0
\(59\) 54.1344i 0.917532i 0.888557 + 0.458766i \(0.151708\pi\)
−0.888557 + 0.458766i \(0.848292\pi\)
\(60\) 0 0
\(61\) 35.7188 0.585554 0.292777 0.956181i \(-0.405421\pi\)
0.292777 + 0.956181i \(0.405421\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) −88.8991 −1.36768
\(66\) 0 0
\(67\) − 95.4255i − 1.42426i −0.702047 0.712131i \(-0.747730\pi\)
0.702047 0.712131i \(-0.252270\pi\)
\(68\) 0 0
\(69\) 50.3932 0.730337
\(70\) 0 0
\(71\) − 55.6524i − 0.783837i −0.920000 0.391919i \(-0.871811\pi\)
0.920000 0.391919i \(-0.128189\pi\)
\(72\) 0 0
\(73\) 130.476 1.78735 0.893673 0.448719i \(-0.148119\pi\)
0.893673 + 0.448719i \(0.148119\pi\)
\(74\) 0 0
\(75\) − 25.2702i − 0.336936i
\(76\) 0 0
\(77\) 43.8673 0.569705
\(78\) 0 0
\(79\) 15.6309i 0.197859i 0.995094 + 0.0989295i \(0.0315418\pi\)
−0.995094 + 0.0989295i \(0.968458\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 49.4495i − 0.595777i −0.954601 0.297889i \(-0.903718\pi\)
0.954601 0.297889i \(-0.0962824\pi\)
\(84\) 0 0
\(85\) −128.790 −1.51517
\(86\) 0 0
\(87\) 94.7403i 1.08897i
\(88\) 0 0
\(89\) 39.2530 0.441045 0.220522 0.975382i \(-0.429224\pi\)
0.220522 + 0.975382i \(0.429224\pi\)
\(90\) 0 0
\(91\) − 37.3813i − 0.410784i
\(92\) 0 0
\(93\) −25.5125 −0.274328
\(94\) 0 0
\(95\) − 40.2224i − 0.423394i
\(96\) 0 0
\(97\) −171.943 −1.77261 −0.886303 0.463106i \(-0.846735\pi\)
−0.886303 + 0.463106i \(0.846735\pi\)
\(98\) 0 0
\(99\) 49.7408i 0.502432i
\(100\) 0 0
\(101\) −113.883 −1.12755 −0.563777 0.825927i \(-0.690652\pi\)
−0.563777 + 0.825927i \(0.690652\pi\)
\(102\) 0 0
\(103\) 93.7629i 0.910319i 0.890410 + 0.455160i \(0.150418\pi\)
−0.890410 + 0.455160i \(0.849582\pi\)
\(104\) 0 0
\(105\) 28.8337 0.274607
\(106\) 0 0
\(107\) − 48.2088i − 0.450549i −0.974295 0.225275i \(-0.927672\pi\)
0.974295 0.225275i \(-0.0723279\pi\)
\(108\) 0 0
\(109\) −89.3790 −0.819991 −0.409996 0.912088i \(-0.634470\pi\)
−0.409996 + 0.912088i \(0.634470\pi\)
\(110\) 0 0
\(111\) 46.4258i 0.418251i
\(112\) 0 0
\(113\) 93.4667 0.827139 0.413569 0.910473i \(-0.364282\pi\)
0.413569 + 0.910473i \(0.364282\pi\)
\(114\) 0 0
\(115\) 183.064i 1.59186i
\(116\) 0 0
\(117\) 42.3865 0.362277
\(118\) 0 0
\(119\) − 54.1551i − 0.455085i
\(120\) 0 0
\(121\) −153.905 −1.27194
\(122\) 0 0
\(123\) 58.1626i 0.472867i
\(124\) 0 0
\(125\) −65.5016 −0.524013
\(126\) 0 0
\(127\) 208.300i 1.64016i 0.572248 + 0.820081i \(0.306071\pi\)
−0.572248 + 0.820081i \(0.693929\pi\)
\(128\) 0 0
\(129\) −6.63789 −0.0514565
\(130\) 0 0
\(131\) − 67.7695i − 0.517324i −0.965968 0.258662i \(-0.916718\pi\)
0.965968 0.258662i \(-0.0832816\pi\)
\(132\) 0 0
\(133\) 16.9132 0.127167
\(134\) 0 0
\(135\) 32.6944i 0.242181i
\(136\) 0 0
\(137\) −13.4127 −0.0979029 −0.0489514 0.998801i \(-0.515588\pi\)
−0.0489514 + 0.998801i \(0.515588\pi\)
\(138\) 0 0
\(139\) − 160.382i − 1.15383i −0.816804 0.576915i \(-0.804256\pi\)
0.816804 0.576915i \(-0.195744\pi\)
\(140\) 0 0
\(141\) −47.5782 −0.337434
\(142\) 0 0
\(143\) 234.260i 1.63818i
\(144\) 0 0
\(145\) −344.164 −2.37355
\(146\) 0 0
\(147\) 12.1244i 0.0824786i
\(148\) 0 0
\(149\) 130.824 0.878015 0.439007 0.898483i \(-0.355330\pi\)
0.439007 + 0.898483i \(0.355330\pi\)
\(150\) 0 0
\(151\) − 175.855i − 1.16460i −0.812974 0.582300i \(-0.802153\pi\)
0.812974 0.582300i \(-0.197847\pi\)
\(152\) 0 0
\(153\) 61.4061 0.401347
\(154\) 0 0
\(155\) − 92.6795i − 0.597932i
\(156\) 0 0
\(157\) 167.199 1.06496 0.532482 0.846441i \(-0.321259\pi\)
0.532482 + 0.846441i \(0.321259\pi\)
\(158\) 0 0
\(159\) − 37.6051i − 0.236510i
\(160\) 0 0
\(161\) −76.9769 −0.478118
\(162\) 0 0
\(163\) 220.591i 1.35332i 0.736295 + 0.676661i \(0.236574\pi\)
−0.736295 + 0.676661i \(0.763426\pi\)
\(164\) 0 0
\(165\) −180.694 −1.09511
\(166\) 0 0
\(167\) − 64.6529i − 0.387143i −0.981086 0.193572i \(-0.937993\pi\)
0.981086 0.193572i \(-0.0620072\pi\)
\(168\) 0 0
\(169\) 30.6236 0.181205
\(170\) 0 0
\(171\) 19.1777i 0.112151i
\(172\) 0 0
\(173\) −237.146 −1.37078 −0.685392 0.728174i \(-0.740369\pi\)
−0.685392 + 0.728174i \(0.740369\pi\)
\(174\) 0 0
\(175\) 38.6009i 0.220577i
\(176\) 0 0
\(177\) 93.7636 0.529738
\(178\) 0 0
\(179\) 103.153i 0.576275i 0.957589 + 0.288137i \(0.0930360\pi\)
−0.957589 + 0.288137i \(0.906964\pi\)
\(180\) 0 0
\(181\) −43.5702 −0.240719 −0.120360 0.992730i \(-0.538405\pi\)
−0.120360 + 0.992730i \(0.538405\pi\)
\(182\) 0 0
\(183\) − 61.8668i − 0.338070i
\(184\) 0 0
\(185\) −168.652 −0.911630
\(186\) 0 0
\(187\) 339.376i 1.81485i
\(188\) 0 0
\(189\) −13.7477 −0.0727393
\(190\) 0 0
\(191\) − 219.309i − 1.14822i −0.818779 0.574109i \(-0.805349\pi\)
0.818779 0.574109i \(-0.194651\pi\)
\(192\) 0 0
\(193\) 9.40273 0.0487188 0.0243594 0.999703i \(-0.492245\pi\)
0.0243594 + 0.999703i \(0.492245\pi\)
\(194\) 0 0
\(195\) 153.978i 0.789630i
\(196\) 0 0
\(197\) −329.193 −1.67103 −0.835514 0.549469i \(-0.814830\pi\)
−0.835514 + 0.549469i \(0.814830\pi\)
\(198\) 0 0
\(199\) − 63.0050i − 0.316608i −0.987390 0.158304i \(-0.949397\pi\)
0.987390 0.158304i \(-0.0506026\pi\)
\(200\) 0 0
\(201\) −165.282 −0.822298
\(202\) 0 0
\(203\) − 144.718i − 0.712898i
\(204\) 0 0
\(205\) −211.288 −1.03067
\(206\) 0 0
\(207\) − 87.2836i − 0.421660i
\(208\) 0 0
\(209\) −105.991 −0.507133
\(210\) 0 0
\(211\) − 0.702405i − 0.00332893i −0.999999 0.00166447i \(-0.999470\pi\)
0.999999 0.00166447i \(-0.000529817\pi\)
\(212\) 0 0
\(213\) −96.3929 −0.452549
\(214\) 0 0
\(215\) − 24.1135i − 0.112156i
\(216\) 0 0
\(217\) 38.9710 0.179590
\(218\) 0 0
\(219\) − 225.992i − 1.03192i
\(220\) 0 0
\(221\) 289.199 1.30859
\(222\) 0 0
\(223\) 260.543i 1.16835i 0.811627 + 0.584177i \(0.198582\pi\)
−0.811627 + 0.584177i \(0.801418\pi\)
\(224\) 0 0
\(225\) −43.7693 −0.194530
\(226\) 0 0
\(227\) − 222.146i − 0.978617i −0.872111 0.489308i \(-0.837249\pi\)
0.872111 0.489308i \(-0.162751\pi\)
\(228\) 0 0
\(229\) −124.781 −0.544893 −0.272447 0.962171i \(-0.587833\pi\)
−0.272447 + 0.962171i \(0.587833\pi\)
\(230\) 0 0
\(231\) − 75.9803i − 0.328919i
\(232\) 0 0
\(233\) 332.321 1.42627 0.713135 0.701027i \(-0.247275\pi\)
0.713135 + 0.701027i \(0.247275\pi\)
\(234\) 0 0
\(235\) − 172.838i − 0.735480i
\(236\) 0 0
\(237\) 27.0734 0.114234
\(238\) 0 0
\(239\) − 285.085i − 1.19282i −0.802679 0.596412i \(-0.796593\pi\)
0.802679 0.596412i \(-0.203407\pi\)
\(240\) 0 0
\(241\) 89.2332 0.370262 0.185131 0.982714i \(-0.440729\pi\)
0.185131 + 0.982714i \(0.440729\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) −44.0443 −0.179773
\(246\) 0 0
\(247\) 90.3197i 0.365667i
\(248\) 0 0
\(249\) −85.6490 −0.343972
\(250\) 0 0
\(251\) 83.4611i 0.332514i 0.986082 + 0.166257i \(0.0531682\pi\)
−0.986082 + 0.166257i \(0.946832\pi\)
\(252\) 0 0
\(253\) 482.395 1.90670
\(254\) 0 0
\(255\) 223.071i 0.874786i
\(256\) 0 0
\(257\) −29.8619 −0.116194 −0.0580971 0.998311i \(-0.518503\pi\)
−0.0580971 + 0.998311i \(0.518503\pi\)
\(258\) 0 0
\(259\) − 70.9166i − 0.273809i
\(260\) 0 0
\(261\) 164.095 0.628717
\(262\) 0 0
\(263\) − 245.304i − 0.932717i −0.884596 0.466358i \(-0.845566\pi\)
0.884596 0.466358i \(-0.154434\pi\)
\(264\) 0 0
\(265\) 136.608 0.515504
\(266\) 0 0
\(267\) − 67.9882i − 0.254637i
\(268\) 0 0
\(269\) 18.9441 0.0704241 0.0352120 0.999380i \(-0.488789\pi\)
0.0352120 + 0.999380i \(0.488789\pi\)
\(270\) 0 0
\(271\) − 278.928i − 1.02925i −0.857414 0.514626i \(-0.827931\pi\)
0.857414 0.514626i \(-0.172069\pi\)
\(272\) 0 0
\(273\) −64.7464 −0.237166
\(274\) 0 0
\(275\) − 241.902i − 0.879644i
\(276\) 0 0
\(277\) 206.348 0.744938 0.372469 0.928045i \(-0.378511\pi\)
0.372469 + 0.928045i \(0.378511\pi\)
\(278\) 0 0
\(279\) 44.1889i 0.158383i
\(280\) 0 0
\(281\) −262.775 −0.935142 −0.467571 0.883956i \(-0.654871\pi\)
−0.467571 + 0.883956i \(0.654871\pi\)
\(282\) 0 0
\(283\) 543.508i 1.92052i 0.279101 + 0.960262i \(0.409963\pi\)
−0.279101 + 0.960262i \(0.590037\pi\)
\(284\) 0 0
\(285\) −69.6672 −0.244446
\(286\) 0 0
\(287\) − 88.8448i − 0.309564i
\(288\) 0 0
\(289\) 129.967 0.449714
\(290\) 0 0
\(291\) 297.814i 1.02341i
\(292\) 0 0
\(293\) −19.1934 −0.0655064 −0.0327532 0.999463i \(-0.510428\pi\)
−0.0327532 + 0.999463i \(0.510428\pi\)
\(294\) 0 0
\(295\) 340.616i 1.15463i
\(296\) 0 0
\(297\) 86.1536 0.290079
\(298\) 0 0
\(299\) − 411.072i − 1.37482i
\(300\) 0 0
\(301\) 10.1395 0.0336862
\(302\) 0 0
\(303\) 197.251i 0.650994i
\(304\) 0 0
\(305\) 224.744 0.736866
\(306\) 0 0
\(307\) − 543.121i − 1.76912i −0.466423 0.884562i \(-0.654458\pi\)
0.466423 0.884562i \(-0.345542\pi\)
\(308\) 0 0
\(309\) 162.402 0.525573
\(310\) 0 0
\(311\) 183.154i 0.588920i 0.955664 + 0.294460i \(0.0951398\pi\)
−0.955664 + 0.294460i \(0.904860\pi\)
\(312\) 0 0
\(313\) 513.858 1.64172 0.820859 0.571131i \(-0.193495\pi\)
0.820859 + 0.571131i \(0.193495\pi\)
\(314\) 0 0
\(315\) − 49.9415i − 0.158544i
\(316\) 0 0
\(317\) 559.731 1.76571 0.882857 0.469642i \(-0.155617\pi\)
0.882857 + 0.469642i \(0.155617\pi\)
\(318\) 0 0
\(319\) 906.914i 2.84299i
\(320\) 0 0
\(321\) −83.5000 −0.260125
\(322\) 0 0
\(323\) 130.848i 0.405102i
\(324\) 0 0
\(325\) −206.136 −0.634265
\(326\) 0 0
\(327\) 154.809i 0.473422i
\(328\) 0 0
\(329\) 72.6769 0.220902
\(330\) 0 0
\(331\) 379.794i 1.14741i 0.819061 + 0.573707i \(0.194495\pi\)
−0.819061 + 0.573707i \(0.805505\pi\)
\(332\) 0 0
\(333\) 80.4119 0.241477
\(334\) 0 0
\(335\) − 600.421i − 1.79230i
\(336\) 0 0
\(337\) −117.618 −0.349015 −0.174507 0.984656i \(-0.555833\pi\)
−0.174507 + 0.984656i \(0.555833\pi\)
\(338\) 0 0
\(339\) − 161.889i − 0.477549i
\(340\) 0 0
\(341\) −244.222 −0.716192
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) 317.076 0.919061
\(346\) 0 0
\(347\) − 302.706i − 0.872351i −0.899862 0.436175i \(-0.856333\pi\)
0.899862 0.436175i \(-0.143667\pi\)
\(348\) 0 0
\(349\) −83.1588 −0.238277 −0.119139 0.992878i \(-0.538013\pi\)
−0.119139 + 0.992878i \(0.538013\pi\)
\(350\) 0 0
\(351\) − 73.4155i − 0.209161i
\(352\) 0 0
\(353\) −277.478 −0.786057 −0.393028 0.919526i \(-0.628573\pi\)
−0.393028 + 0.919526i \(0.628573\pi\)
\(354\) 0 0
\(355\) − 350.167i − 0.986387i
\(356\) 0 0
\(357\) −93.7993 −0.262743
\(358\) 0 0
\(359\) − 76.3214i − 0.212594i −0.994334 0.106297i \(-0.966101\pi\)
0.994334 0.106297i \(-0.0338995\pi\)
\(360\) 0 0
\(361\) 320.135 0.886800
\(362\) 0 0
\(363\) 266.572i 0.734358i
\(364\) 0 0
\(365\) 820.962 2.24921
\(366\) 0 0
\(367\) − 176.403i − 0.480663i −0.970691 0.240332i \(-0.922744\pi\)
0.970691 0.240332i \(-0.0772562\pi\)
\(368\) 0 0
\(369\) 100.741 0.273010
\(370\) 0 0
\(371\) 57.4428i 0.154832i
\(372\) 0 0
\(373\) −57.5272 −0.154229 −0.0771143 0.997022i \(-0.524571\pi\)
−0.0771143 + 0.997022i \(0.524571\pi\)
\(374\) 0 0
\(375\) 113.452i 0.302539i
\(376\) 0 0
\(377\) 772.823 2.04993
\(378\) 0 0
\(379\) 412.402i 1.08813i 0.839042 + 0.544066i \(0.183116\pi\)
−0.839042 + 0.544066i \(0.816884\pi\)
\(380\) 0 0
\(381\) 360.787 0.946948
\(382\) 0 0
\(383\) − 583.323i − 1.52304i −0.648143 0.761518i \(-0.724454\pi\)
0.648143 0.761518i \(-0.275546\pi\)
\(384\) 0 0
\(385\) 276.015 0.716921
\(386\) 0 0
\(387\) 11.4972i 0.0297084i
\(388\) 0 0
\(389\) −64.4937 −0.165794 −0.0828968 0.996558i \(-0.526417\pi\)
−0.0828968 + 0.996558i \(0.526417\pi\)
\(390\) 0 0
\(391\) − 595.527i − 1.52309i
\(392\) 0 0
\(393\) −117.380 −0.298677
\(394\) 0 0
\(395\) 98.3500i 0.248987i
\(396\) 0 0
\(397\) 0.702051 0.00176839 0.000884195 1.00000i \(-0.499719\pi\)
0.000884195 1.00000i \(0.499719\pi\)
\(398\) 0 0
\(399\) − 29.2945i − 0.0734198i
\(400\) 0 0
\(401\) 61.3178 0.152912 0.0764561 0.997073i \(-0.475640\pi\)
0.0764561 + 0.997073i \(0.475640\pi\)
\(402\) 0 0
\(403\) 208.113i 0.516408i
\(404\) 0 0
\(405\) 56.6284 0.139823
\(406\) 0 0
\(407\) 444.417i 1.09193i
\(408\) 0 0
\(409\) −109.489 −0.267700 −0.133850 0.991002i \(-0.542734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(410\) 0 0
\(411\) 23.2315i 0.0565242i
\(412\) 0 0
\(413\) −143.226 −0.346795
\(414\) 0 0
\(415\) − 311.138i − 0.749731i
\(416\) 0 0
\(417\) −277.790 −0.666164
\(418\) 0 0
\(419\) − 312.627i − 0.746128i −0.927806 0.373064i \(-0.878307\pi\)
0.927806 0.373064i \(-0.121693\pi\)
\(420\) 0 0
\(421\) −633.267 −1.50420 −0.752099 0.659050i \(-0.770958\pi\)
−0.752099 + 0.659050i \(0.770958\pi\)
\(422\) 0 0
\(423\) 82.4078i 0.194818i
\(424\) 0 0
\(425\) −298.633 −0.702667
\(426\) 0 0
\(427\) 94.5031i 0.221319i
\(428\) 0 0
\(429\) 405.750 0.945803
\(430\) 0 0
\(431\) 46.7851i 0.108550i 0.998526 + 0.0542750i \(0.0172848\pi\)
−0.998526 + 0.0542750i \(0.982715\pi\)
\(432\) 0 0
\(433\) 71.4224 0.164948 0.0824739 0.996593i \(-0.473718\pi\)
0.0824739 + 0.996593i \(0.473718\pi\)
\(434\) 0 0
\(435\) 596.110i 1.37037i
\(436\) 0 0
\(437\) 185.989 0.425605
\(438\) 0 0
\(439\) − 0.829943i − 0.00189053i −1.00000 0.000945266i \(-0.999699\pi\)
1.00000 0.000945266i \(-0.000300887\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 770.065i − 1.73830i −0.494552 0.869148i \(-0.664668\pi\)
0.494552 0.869148i \(-0.335332\pi\)
\(444\) 0 0
\(445\) 246.981 0.555014
\(446\) 0 0
\(447\) − 226.594i − 0.506922i
\(448\) 0 0
\(449\) −80.0955 −0.178386 −0.0891932 0.996014i \(-0.528429\pi\)
−0.0891932 + 0.996014i \(0.528429\pi\)
\(450\) 0 0
\(451\) 556.769i 1.23452i
\(452\) 0 0
\(453\) −304.589 −0.672382
\(454\) 0 0
\(455\) − 235.205i − 0.516934i
\(456\) 0 0
\(457\) −178.912 −0.391493 −0.195747 0.980654i \(-0.562713\pi\)
−0.195747 + 0.980654i \(0.562713\pi\)
\(458\) 0 0
\(459\) − 106.358i − 0.231718i
\(460\) 0 0
\(461\) 320.864 0.696017 0.348009 0.937491i \(-0.386858\pi\)
0.348009 + 0.937491i \(0.386858\pi\)
\(462\) 0 0
\(463\) 597.651i 1.29082i 0.763835 + 0.645411i \(0.223314\pi\)
−0.763835 + 0.645411i \(0.776686\pi\)
\(464\) 0 0
\(465\) −160.526 −0.345216
\(466\) 0 0
\(467\) − 578.307i − 1.23834i −0.785255 0.619172i \(-0.787468\pi\)
0.785255 0.619172i \(-0.212532\pi\)
\(468\) 0 0
\(469\) 252.472 0.538320
\(470\) 0 0
\(471\) − 289.598i − 0.614858i
\(472\) 0 0
\(473\) −63.5420 −0.134338
\(474\) 0 0
\(475\) − 93.2663i − 0.196350i
\(476\) 0 0
\(477\) −65.1340 −0.136549
\(478\) 0 0
\(479\) − 543.921i − 1.13554i −0.823189 0.567768i \(-0.807807\pi\)
0.823189 0.567768i \(-0.192193\pi\)
\(480\) 0 0
\(481\) 378.708 0.787336
\(482\) 0 0
\(483\) 133.328i 0.276041i
\(484\) 0 0
\(485\) −1081.87 −2.23066
\(486\) 0 0
\(487\) 25.1657i 0.0516750i 0.999666 + 0.0258375i \(0.00822524\pi\)
−0.999666 + 0.0258375i \(0.991775\pi\)
\(488\) 0 0
\(489\) 382.076 0.781341
\(490\) 0 0
\(491\) 876.015i 1.78414i 0.451894 + 0.892072i \(0.350749\pi\)
−0.451894 + 0.892072i \(0.649251\pi\)
\(492\) 0 0
\(493\) 1119.60 2.27100
\(494\) 0 0
\(495\) 312.971i 0.632265i
\(496\) 0 0
\(497\) 147.243 0.296263
\(498\) 0 0
\(499\) 9.06767i 0.0181717i 0.999959 + 0.00908584i \(0.00289215\pi\)
−0.999959 + 0.00908584i \(0.997108\pi\)
\(500\) 0 0
\(501\) −111.982 −0.223517
\(502\) 0 0
\(503\) 433.976i 0.862774i 0.902167 + 0.431387i \(0.141976\pi\)
−0.902167 + 0.431387i \(0.858024\pi\)
\(504\) 0 0
\(505\) −716.556 −1.41892
\(506\) 0 0
\(507\) − 53.0416i − 0.104619i
\(508\) 0 0
\(509\) 335.775 0.659675 0.329838 0.944038i \(-0.393006\pi\)
0.329838 + 0.944038i \(0.393006\pi\)
\(510\) 0 0
\(511\) 345.208i 0.675553i
\(512\) 0 0
\(513\) 33.2168 0.0647502
\(514\) 0 0
\(515\) 589.960i 1.14555i
\(516\) 0 0
\(517\) −455.448 −0.880944
\(518\) 0 0
\(519\) 410.748i 0.791423i
\(520\) 0 0
\(521\) 540.822 1.03805 0.519023 0.854760i \(-0.326296\pi\)
0.519023 + 0.854760i \(0.326296\pi\)
\(522\) 0 0
\(523\) − 337.109i − 0.644568i −0.946643 0.322284i \(-0.895549\pi\)
0.946643 0.322284i \(-0.104451\pi\)
\(524\) 0 0
\(525\) 66.8587 0.127350
\(526\) 0 0
\(527\) 301.497i 0.572100i
\(528\) 0 0
\(529\) −317.492 −0.600175
\(530\) 0 0
\(531\) − 162.403i − 0.305844i
\(532\) 0 0
\(533\) 474.449 0.890147
\(534\) 0 0
\(535\) − 303.331i − 0.566975i
\(536\) 0 0
\(537\) 178.667 0.332712
\(538\) 0 0
\(539\) 116.062i 0.215328i
\(540\) 0 0
\(541\) −210.355 −0.388827 −0.194413 0.980920i \(-0.562280\pi\)
−0.194413 + 0.980920i \(0.562280\pi\)
\(542\) 0 0
\(543\) 75.4657i 0.138979i
\(544\) 0 0
\(545\) −562.376 −1.03188
\(546\) 0 0
\(547\) − 228.588i − 0.417894i −0.977927 0.208947i \(-0.932996\pi\)
0.977927 0.208947i \(-0.0670036\pi\)
\(548\) 0 0
\(549\) −107.156 −0.195185
\(550\) 0 0
\(551\) 349.664i 0.634599i
\(552\) 0 0
\(553\) −41.3554 −0.0747837
\(554\) 0 0
\(555\) 292.113i 0.526330i
\(556\) 0 0
\(557\) −129.632 −0.232732 −0.116366 0.993206i \(-0.537125\pi\)
−0.116366 + 0.993206i \(0.537125\pi\)
\(558\) 0 0
\(559\) 54.1471i 0.0968643i
\(560\) 0 0
\(561\) 587.817 1.04780
\(562\) 0 0
\(563\) − 718.440i − 1.27609i −0.769998 0.638046i \(-0.779743\pi\)
0.769998 0.638046i \(-0.220257\pi\)
\(564\) 0 0
\(565\) 588.096 1.04088
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) 736.365 1.29414 0.647069 0.762431i \(-0.275994\pi\)
0.647069 + 0.762431i \(0.275994\pi\)
\(570\) 0 0
\(571\) − 161.022i − 0.282001i −0.990010 0.141000i \(-0.954968\pi\)
0.990010 0.141000i \(-0.0450319\pi\)
\(572\) 0 0
\(573\) −379.855 −0.662923
\(574\) 0 0
\(575\) 424.483i 0.738230i
\(576\) 0 0
\(577\) 748.940 1.29799 0.648995 0.760793i \(-0.275190\pi\)
0.648995 + 0.760793i \(0.275190\pi\)
\(578\) 0 0
\(579\) − 16.2860i − 0.0281278i
\(580\) 0 0
\(581\) 130.831 0.225183
\(582\) 0 0
\(583\) − 359.980i − 0.617461i
\(584\) 0 0
\(585\) 266.697 0.455893
\(586\) 0 0
\(587\) − 261.696i − 0.445819i −0.974839 0.222910i \(-0.928444\pi\)
0.974839 0.222910i \(-0.0715555\pi\)
\(588\) 0 0
\(589\) −94.1605 −0.159865
\(590\) 0 0
\(591\) 570.178i 0.964769i
\(592\) 0 0
\(593\) −284.492 −0.479750 −0.239875 0.970804i \(-0.577106\pi\)
−0.239875 + 0.970804i \(0.577106\pi\)
\(594\) 0 0
\(595\) − 340.746i − 0.572682i
\(596\) 0 0
\(597\) −109.128 −0.182794
\(598\) 0 0
\(599\) 358.608i 0.598678i 0.954147 + 0.299339i \(0.0967662\pi\)
−0.954147 + 0.299339i \(0.903234\pi\)
\(600\) 0 0
\(601\) −404.112 −0.672399 −0.336200 0.941791i \(-0.609142\pi\)
−0.336200 + 0.941791i \(0.609142\pi\)
\(602\) 0 0
\(603\) 286.277i 0.474754i
\(604\) 0 0
\(605\) −968.378 −1.60063
\(606\) 0 0
\(607\) − 608.215i − 1.00200i −0.865447 0.501001i \(-0.832965\pi\)
0.865447 0.501001i \(-0.167035\pi\)
\(608\) 0 0
\(609\) −250.659 −0.411592
\(610\) 0 0
\(611\) 388.108i 0.635202i
\(612\) 0 0
\(613\) 741.906 1.21029 0.605143 0.796117i \(-0.293116\pi\)
0.605143 + 0.796117i \(0.293116\pi\)
\(614\) 0 0
\(615\) 365.961i 0.595059i
\(616\) 0 0
\(617\) 788.372 1.27775 0.638875 0.769310i \(-0.279400\pi\)
0.638875 + 0.769310i \(0.279400\pi\)
\(618\) 0 0
\(619\) − 1053.85i − 1.70251i −0.524754 0.851254i \(-0.675843\pi\)
0.524754 0.851254i \(-0.324157\pi\)
\(620\) 0 0
\(621\) −151.180 −0.243446
\(622\) 0 0
\(623\) 103.854i 0.166699i
\(624\) 0 0
\(625\) −776.883 −1.24301
\(626\) 0 0
\(627\) 183.581i 0.292793i
\(628\) 0 0
\(629\) 548.642 0.872245
\(630\) 0 0
\(631\) 729.494i 1.15609i 0.816004 + 0.578046i \(0.196185\pi\)
−0.816004 + 0.578046i \(0.803815\pi\)
\(632\) 0 0
\(633\) −1.21660 −0.00192196
\(634\) 0 0
\(635\) 1310.63i 2.06399i
\(636\) 0 0
\(637\) 98.9018 0.155262
\(638\) 0 0
\(639\) 166.957i 0.261279i
\(640\) 0 0
\(641\) 258.186 0.402787 0.201393 0.979510i \(-0.435453\pi\)
0.201393 + 0.979510i \(0.435453\pi\)
\(642\) 0 0
\(643\) 844.440i 1.31328i 0.754203 + 0.656641i \(0.228023\pi\)
−0.754203 + 0.656641i \(0.771977\pi\)
\(644\) 0 0
\(645\) −41.7659 −0.0647533
\(646\) 0 0
\(647\) − 94.5538i − 0.146142i −0.997327 0.0730709i \(-0.976720\pi\)
0.997327 0.0730709i \(-0.0232799\pi\)
\(648\) 0 0
\(649\) 897.563 1.38299
\(650\) 0 0
\(651\) − 67.4997i − 0.103686i
\(652\) 0 0
\(653\) 239.621 0.366954 0.183477 0.983024i \(-0.441265\pi\)
0.183477 + 0.983024i \(0.441265\pi\)
\(654\) 0 0
\(655\) − 426.408i − 0.651005i
\(656\) 0 0
\(657\) −391.429 −0.595782
\(658\) 0 0
\(659\) 150.618i 0.228555i 0.993449 + 0.114278i \(0.0364553\pi\)
−0.993449 + 0.114278i \(0.963545\pi\)
\(660\) 0 0
\(661\) 575.893 0.871246 0.435623 0.900129i \(-0.356528\pi\)
0.435623 + 0.900129i \(0.356528\pi\)
\(662\) 0 0
\(663\) − 500.907i − 0.755515i
\(664\) 0 0
\(665\) 106.418 0.160028
\(666\) 0 0
\(667\) − 1591.42i − 2.38594i
\(668\) 0 0
\(669\) 451.273 0.674549
\(670\) 0 0
\(671\) − 592.227i − 0.882604i
\(672\) 0 0
\(673\) −614.833 −0.913571 −0.456785 0.889577i \(-0.650999\pi\)
−0.456785 + 0.889577i \(0.650999\pi\)
\(674\) 0 0
\(675\) 75.8106i 0.112312i
\(676\) 0 0
\(677\) 308.666 0.455933 0.227966 0.973669i \(-0.426792\pi\)
0.227966 + 0.973669i \(0.426792\pi\)
\(678\) 0 0
\(679\) − 454.918i − 0.669982i
\(680\) 0 0
\(681\) −384.768 −0.565005
\(682\) 0 0
\(683\) 143.442i 0.210018i 0.994471 + 0.105009i \(0.0334871\pi\)
−0.994471 + 0.105009i \(0.966513\pi\)
\(684\) 0 0
\(685\) −84.3932 −0.123202
\(686\) 0 0
\(687\) 216.126i 0.314594i
\(688\) 0 0
\(689\) −306.755 −0.445218
\(690\) 0 0
\(691\) − 366.656i − 0.530616i −0.964164 0.265308i \(-0.914526\pi\)
0.964164 0.265308i \(-0.0854737\pi\)
\(692\) 0 0
\(693\) −131.602 −0.189902
\(694\) 0 0
\(695\) − 1009.13i − 1.45199i
\(696\) 0 0
\(697\) 687.343 0.986145
\(698\) 0 0
\(699\) − 575.597i − 0.823457i
\(700\) 0 0
\(701\) −125.995 −0.179736 −0.0898681 0.995954i \(-0.528645\pi\)
−0.0898681 + 0.995954i \(0.528645\pi\)
\(702\) 0 0
\(703\) 171.347i 0.243736i
\(704\) 0 0
\(705\) −299.364 −0.424630
\(706\) 0 0
\(707\) − 301.306i − 0.426175i
\(708\) 0 0
\(709\) 159.688 0.225230 0.112615 0.993639i \(-0.464077\pi\)
0.112615 + 0.993639i \(0.464077\pi\)
\(710\) 0 0
\(711\) − 46.8926i − 0.0659530i
\(712\) 0 0
\(713\) 428.552 0.601055
\(714\) 0 0
\(715\) 1473.97i 2.06150i
\(716\) 0 0
\(717\) −493.781 −0.688677
\(718\) 0 0
\(719\) − 1368.60i − 1.90348i −0.306899 0.951742i \(-0.599292\pi\)
0.306899 0.951742i \(-0.400708\pi\)
\(720\) 0 0
\(721\) −248.073 −0.344068
\(722\) 0 0
\(723\) − 154.556i − 0.213771i
\(724\) 0 0
\(725\) −798.036 −1.10074
\(726\) 0 0
\(727\) 510.747i 0.702540i 0.936274 + 0.351270i \(0.114250\pi\)
−0.936274 + 0.351270i \(0.885750\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 78.4440i 0.107311i
\(732\) 0 0
\(733\) 774.969 1.05726 0.528628 0.848853i \(-0.322707\pi\)
0.528628 + 0.848853i \(0.322707\pi\)
\(734\) 0 0
\(735\) 76.2869i 0.103792i
\(736\) 0 0
\(737\) −1582.18 −2.14679
\(738\) 0 0
\(739\) 1349.26i 1.82579i 0.408194 + 0.912895i \(0.366159\pi\)
−0.408194 + 0.912895i \(0.633841\pi\)
\(740\) 0 0
\(741\) 156.438 0.211118
\(742\) 0 0
\(743\) 853.994i 1.14939i 0.818369 + 0.574693i \(0.194878\pi\)
−0.818369 + 0.574693i \(0.805122\pi\)
\(744\) 0 0
\(745\) 823.151 1.10490
\(746\) 0 0
\(747\) 148.348i 0.198592i
\(748\) 0 0
\(749\) 127.548 0.170292
\(750\) 0 0
\(751\) − 509.524i − 0.678460i −0.940703 0.339230i \(-0.889833\pi\)
0.940703 0.339230i \(-0.110167\pi\)
\(752\) 0 0
\(753\) 144.559 0.191977
\(754\) 0 0
\(755\) − 1106.48i − 1.46554i
\(756\) 0 0
\(757\) −1373.83 −1.81484 −0.907418 0.420228i \(-0.861950\pi\)
−0.907418 + 0.420228i \(0.861950\pi\)
\(758\) 0 0
\(759\) − 835.533i − 1.10083i
\(760\) 0 0
\(761\) −1165.32 −1.53130 −0.765652 0.643255i \(-0.777583\pi\)
−0.765652 + 0.643255i \(0.777583\pi\)
\(762\) 0 0
\(763\) − 236.475i − 0.309927i
\(764\) 0 0
\(765\) 386.370 0.505058
\(766\) 0 0
\(767\) − 764.855i − 0.997204i
\(768\) 0 0
\(769\) −686.335 −0.892503 −0.446251 0.894908i \(-0.647241\pi\)
−0.446251 + 0.894908i \(0.647241\pi\)
\(770\) 0 0
\(771\) 51.7223i 0.0670848i
\(772\) 0 0
\(773\) −244.058 −0.315729 −0.157864 0.987461i \(-0.550461\pi\)
−0.157864 + 0.987461i \(0.550461\pi\)
\(774\) 0 0
\(775\) − 214.902i − 0.277293i
\(776\) 0 0
\(777\) −122.831 −0.158084
\(778\) 0 0
\(779\) 214.664i 0.275564i
\(780\) 0 0
\(781\) −922.733 −1.18148
\(782\) 0 0
\(783\) − 284.221i − 0.362990i
\(784\) 0 0
\(785\) 1052.03 1.34016
\(786\) 0 0
\(787\) 959.027i 1.21859i 0.792945 + 0.609293i \(0.208547\pi\)
−0.792945 + 0.609293i \(0.791453\pi\)
\(788\) 0 0
\(789\) −424.880 −0.538504
\(790\) 0 0
\(791\) 247.290i 0.312629i
\(792\) 0 0
\(793\) −504.665 −0.636399
\(794\) 0 0
\(795\) − 236.613i − 0.297626i
\(796\) 0 0
\(797\) −24.5322 −0.0307807 −0.0153903 0.999882i \(-0.504899\pi\)
−0.0153903 + 0.999882i \(0.504899\pi\)
\(798\) 0 0
\(799\) 562.260i 0.703705i
\(800\) 0 0
\(801\) −117.759 −0.147015
\(802\) 0 0
\(803\) − 2163.33i − 2.69406i
\(804\) 0 0
\(805\) −484.342 −0.601667
\(806\) 0 0
\(807\) − 32.8121i − 0.0406594i
\(808\) 0 0
\(809\) 673.148 0.832074 0.416037 0.909348i \(-0.363419\pi\)
0.416037 + 0.909348i \(0.363419\pi\)
\(810\) 0 0
\(811\) 386.219i 0.476226i 0.971237 + 0.238113i \(0.0765288\pi\)
−0.971237 + 0.238113i \(0.923471\pi\)
\(812\) 0 0
\(813\) −483.117 −0.594239
\(814\) 0 0
\(815\) 1387.97i 1.70303i
\(816\) 0 0
\(817\) −24.4989 −0.0299864
\(818\) 0 0
\(819\) 112.144i 0.136928i
\(820\) 0 0
\(821\) −5.93033 −0.00722330 −0.00361165 0.999993i \(-0.501150\pi\)
−0.00361165 + 0.999993i \(0.501150\pi\)
\(822\) 0 0
\(823\) 365.439i 0.444033i 0.975043 + 0.222016i \(0.0712638\pi\)
−0.975043 + 0.222016i \(0.928736\pi\)
\(824\) 0 0
\(825\) −418.987 −0.507863
\(826\) 0 0
\(827\) 1236.80i 1.49552i 0.663968 + 0.747761i \(0.268871\pi\)
−0.663968 + 0.747761i \(0.731129\pi\)
\(828\) 0 0
\(829\) −899.957 −1.08559 −0.542797 0.839864i \(-0.682635\pi\)
−0.542797 + 0.839864i \(0.682635\pi\)
\(830\) 0 0
\(831\) − 357.405i − 0.430090i
\(832\) 0 0
\(833\) 143.281 0.172006
\(834\) 0 0
\(835\) − 406.799i − 0.487184i
\(836\) 0 0
\(837\) 76.5375 0.0914427
\(838\) 0 0
\(839\) − 473.095i − 0.563880i −0.959432 0.281940i \(-0.909022\pi\)
0.959432 0.281940i \(-0.0909779\pi\)
\(840\) 0 0
\(841\) 2150.91 2.55756
\(842\) 0 0
\(843\) 455.140i 0.539905i
\(844\) 0 0
\(845\) 192.685 0.228029
\(846\) 0 0
\(847\) − 407.195i − 0.480750i
\(848\) 0 0
\(849\) 941.384 1.10881
\(850\) 0 0
\(851\) − 779.849i − 0.916391i
\(852\) 0 0
\(853\) 456.925 0.535668 0.267834 0.963465i \(-0.413692\pi\)
0.267834 + 0.963465i \(0.413692\pi\)
\(854\) 0 0
\(855\) 120.667i 0.141131i
\(856\) 0 0
\(857\) −1460.48 −1.70417 −0.852087 0.523401i \(-0.824663\pi\)
−0.852087 + 0.523401i \(0.824663\pi\)
\(858\) 0 0
\(859\) − 329.072i − 0.383087i −0.981484 0.191544i \(-0.938651\pi\)
0.981484 0.191544i \(-0.0613493\pi\)
\(860\) 0 0
\(861\) −153.884 −0.178727
\(862\) 0 0
\(863\) − 528.421i − 0.612307i −0.951982 0.306154i \(-0.900958\pi\)
0.951982 0.306154i \(-0.0990421\pi\)
\(864\) 0 0
\(865\) −1492.13 −1.72501
\(866\) 0 0
\(867\) − 225.110i − 0.259643i
\(868\) 0 0
\(869\) 259.164 0.298232
\(870\) 0 0
\(871\) 1348.25i 1.54793i
\(872\) 0 0
\(873\) 515.828 0.590869
\(874\) 0 0
\(875\) − 173.301i − 0.198058i
\(876\) 0 0
\(877\) −532.559 −0.607250 −0.303625 0.952792i \(-0.598197\pi\)
−0.303625 + 0.952792i \(0.598197\pi\)
\(878\) 0 0
\(879\) 33.2439i 0.0378201i
\(880\) 0 0
\(881\) −326.517 −0.370621 −0.185310 0.982680i \(-0.559329\pi\)
−0.185310 + 0.982680i \(0.559329\pi\)
\(882\) 0 0
\(883\) 31.0138i 0.0351232i 0.999846 + 0.0175616i \(0.00559032\pi\)
−0.999846 + 0.0175616i \(0.994410\pi\)
\(884\) 0 0
\(885\) 589.964 0.666626
\(886\) 0 0
\(887\) 414.448i 0.467247i 0.972327 + 0.233623i \(0.0750583\pi\)
−0.972327 + 0.233623i \(0.924942\pi\)
\(888\) 0 0
\(889\) −551.111 −0.619923
\(890\) 0 0
\(891\) − 149.222i − 0.167477i
\(892\) 0 0
\(893\) −175.600 −0.196640
\(894\) 0 0
\(895\) 649.044i 0.725189i
\(896\) 0 0
\(897\) −711.997 −0.793753
\(898\) 0 0
\(899\) 805.688i 0.896204i
\(900\) 0 0
\(901\) −444.402 −0.493232
\(902\) 0 0
\(903\) − 17.5622i − 0.0194487i
\(904\) 0 0
\(905\) −274.145 −0.302923
\(906\) 0 0
\(907\) 388.080i 0.427872i 0.976848 + 0.213936i \(0.0686283\pi\)
−0.976848 + 0.213936i \(0.931372\pi\)
\(908\) 0 0
\(909\) 341.649 0.375851
\(910\) 0 0
\(911\) 891.807i 0.978932i 0.872023 + 0.489466i \(0.162808\pi\)
−0.872023 + 0.489466i \(0.837192\pi\)
\(912\) 0 0
\(913\) −819.886 −0.898013
\(914\) 0 0
\(915\) − 389.268i − 0.425430i
\(916\) 0 0
\(917\) 179.301 0.195530
\(918\) 0 0
\(919\) − 390.619i − 0.425048i −0.977156 0.212524i \(-0.931832\pi\)
0.977156 0.212524i \(-0.0681684\pi\)
\(920\) 0 0
\(921\) −940.713 −1.02140
\(922\) 0 0
\(923\) 786.304i 0.851900i
\(924\) 0 0
\(925\) −391.064 −0.422771
\(926\) 0 0
\(927\) − 281.289i − 0.303440i
\(928\) 0 0
\(929\) −241.450 −0.259903 −0.129952 0.991520i \(-0.541482\pi\)
−0.129952 + 0.991520i \(0.541482\pi\)
\(930\) 0 0
\(931\) 44.7481i 0.0480645i
\(932\) 0 0
\(933\) 317.232 0.340013
\(934\) 0 0
\(935\) 2135.37i 2.28382i
\(936\) 0 0
\(937\) −753.075 −0.803709 −0.401855 0.915703i \(-0.631634\pi\)
−0.401855 + 0.915703i \(0.631634\pi\)
\(938\) 0 0
\(939\) − 890.028i − 0.947847i
\(940\) 0 0
\(941\) −1372.35 −1.45840 −0.729199 0.684302i \(-0.760107\pi\)
−0.729199 + 0.684302i \(0.760107\pi\)
\(942\) 0 0
\(943\) − 977.000i − 1.03606i
\(944\) 0 0
\(945\) −86.5012 −0.0915357
\(946\) 0 0
\(947\) − 498.081i − 0.525957i −0.964802 0.262979i \(-0.915295\pi\)
0.964802 0.262979i \(-0.0847048\pi\)
\(948\) 0 0
\(949\) −1843.48 −1.94255
\(950\) 0 0
\(951\) − 969.483i − 1.01944i
\(952\) 0 0
\(953\) −117.526 −0.123322 −0.0616610 0.998097i \(-0.519640\pi\)
−0.0616610 + 0.998097i \(0.519640\pi\)
\(954\) 0 0
\(955\) − 1379.90i − 1.44493i
\(956\) 0 0
\(957\) 1570.82 1.64140
\(958\) 0 0
\(959\) − 35.4867i − 0.0370038i
\(960\) 0 0
\(961\) 744.037 0.774233
\(962\) 0 0
\(963\) 144.626i 0.150183i
\(964\) 0 0
\(965\) 59.1623 0.0613081
\(966\) 0 0
\(967\) − 1016.54i − 1.05123i −0.850723 0.525614i \(-0.823836\pi\)
0.850723 0.525614i \(-0.176164\pi\)
\(968\) 0 0
\(969\) 226.635 0.233886
\(970\) 0 0
\(971\) − 760.606i − 0.783323i −0.920109 0.391661i \(-0.871900\pi\)
0.920109 0.391661i \(-0.128100\pi\)
\(972\) 0 0
\(973\) 424.332 0.436107
\(974\) 0 0
\(975\) 357.038i 0.366193i
\(976\) 0 0
\(977\) −1823.13 −1.86605 −0.933026 0.359809i \(-0.882842\pi\)
−0.933026 + 0.359809i \(0.882842\pi\)
\(978\) 0 0
\(979\) − 650.825i − 0.664786i
\(980\) 0 0
\(981\) 268.137 0.273330
\(982\) 0 0
\(983\) − 1400.51i − 1.42473i −0.701809 0.712365i \(-0.747624\pi\)
0.701809 0.712365i \(-0.252376\pi\)
\(984\) 0 0
\(985\) −2071.29 −2.10284
\(986\) 0 0
\(987\) − 125.880i − 0.127538i
\(988\) 0 0
\(989\) 111.502 0.112742
\(990\) 0 0
\(991\) 508.288i 0.512904i 0.966557 + 0.256452i \(0.0825536\pi\)
−0.966557 + 0.256452i \(0.917446\pi\)
\(992\) 0 0
\(993\) 657.822 0.662459
\(994\) 0 0
\(995\) − 396.430i − 0.398422i
\(996\) 0 0
\(997\) −1357.91 −1.36199 −0.680997 0.732286i \(-0.738453\pi\)
−0.680997 + 0.732286i \(0.738453\pi\)
\(998\) 0 0
\(999\) − 139.277i − 0.139417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1344.3.m.e.127.5 12
4.3 odd 2 inner 1344.3.m.e.127.11 12
8.3 odd 2 84.3.g.a.43.5 12
8.5 even 2 84.3.g.a.43.6 yes 12
24.5 odd 2 252.3.g.b.127.7 12
24.11 even 2 252.3.g.b.127.8 12
56.13 odd 2 588.3.g.d.295.6 12
56.27 even 2 588.3.g.d.295.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.5 12 8.3 odd 2
84.3.g.a.43.6 yes 12 8.5 even 2
252.3.g.b.127.7 12 24.5 odd 2
252.3.g.b.127.8 12 24.11 even 2
588.3.g.d.295.5 12 56.27 even 2
588.3.g.d.295.6 12 56.13 odd 2
1344.3.m.e.127.5 12 1.1 even 1 trivial
1344.3.m.e.127.11 12 4.3 odd 2 inner