Properties

Label 252.3.g.b.127.7
Level $252$
Weight $3$
Character 252.127
Analytic conductor $6.867$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,3,Mod(127,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 252.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.86650266188\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{19} \)
Twist minimal: no (minimal twist has level 84)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.7
Root \(1.10978 - 0.876576i\) of defining polynomial
Character \(\chi\) \(=\) 252.127
Dual form 252.3.g.b.127.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0345996 - 1.99970i) q^{2} +(-3.99761 + 0.138378i) q^{4} +6.29204 q^{5} +2.64575i q^{7} +(0.415030 + 7.98923i) q^{8} +(-0.217702 - 12.5822i) q^{10} -16.5803i q^{11} +14.1288 q^{13} +(5.29071 - 0.0915421i) q^{14} +(15.9617 - 1.10636i) q^{16} +20.4687 q^{17} +6.39258i q^{19} +(-25.1531 + 0.870679i) q^{20} +(-33.1556 + 0.573671i) q^{22} -29.0945i q^{23} +14.5898 q^{25} +(-0.488852 - 28.2534i) q^{26} +(-0.366113 - 10.5767i) q^{28} -54.6984 q^{29} -14.7296i q^{31} +(-2.76466 - 31.8803i) q^{32} +(-0.708210 - 40.9313i) q^{34} +16.6472i q^{35} +26.8040 q^{37} +(12.7833 - 0.221181i) q^{38} +(2.61139 + 50.2685i) q^{40} +33.5802 q^{41} +3.83239i q^{43} +(2.29434 + 66.2814i) q^{44} +(-58.1804 + 1.00666i) q^{46} +27.4693i q^{47} -7.00000 q^{49} +(-0.504801 - 29.1752i) q^{50} +(-56.4815 + 1.95512i) q^{52} +21.7113 q^{53} -104.324i q^{55} +(-21.1375 + 1.09807i) q^{56} +(1.89254 + 109.380i) q^{58} +54.1344i q^{59} -35.7188 q^{61} +(-29.4549 + 0.509641i) q^{62} +(-63.6555 + 6.63154i) q^{64} +88.8991 q^{65} +95.4255i q^{67} +(-81.8258 + 2.83241i) q^{68} +(33.2894 - 0.575986i) q^{70} +55.6524i q^{71} +130.476 q^{73} +(-0.927408 - 53.5999i) q^{74} +(-0.884592 - 25.5550i) q^{76} +43.8673 q^{77} +15.6309i q^{79} +(100.432 - 6.96126i) q^{80} +(-1.16186 - 67.1503i) q^{82} -49.4495i q^{83} +128.790 q^{85} +(7.66363 - 0.132599i) q^{86} +(132.464 - 6.88131i) q^{88} -39.2530 q^{89} +37.3813i q^{91} +(4.02604 + 116.309i) q^{92} +(54.9303 - 0.950427i) q^{94} +40.2224i q^{95} -171.943 q^{97} +(0.242198 + 13.9979i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} + 2 q^{4} - 8 q^{5} + 10 q^{8} + 28 q^{10} - 24 q^{13} + 14 q^{14} - 14 q^{16} + 40 q^{17} + 20 q^{20} - 88 q^{22} + 180 q^{25} - 100 q^{26} + 14 q^{28} - 72 q^{29} - 142 q^{32} - 100 q^{34}+ \cdots + 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0345996 1.99970i −0.0172998 0.999850i
\(3\) 0 0
\(4\) −3.99761 + 0.138378i −0.999401 + 0.0345945i
\(5\) 6.29204 1.25841 0.629204 0.777240i \(-0.283381\pi\)
0.629204 + 0.777240i \(0.283381\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0.415030 + 7.98923i 0.0518788 + 0.998653i
\(9\) 0 0
\(10\) −0.217702 12.5822i −0.0217702 1.25822i
\(11\) 16.5803i 1.50730i −0.657278 0.753649i \(-0.728292\pi\)
0.657278 0.753649i \(-0.271708\pi\)
\(12\) 0 0
\(13\) 14.1288 1.08683 0.543416 0.839463i \(-0.317131\pi\)
0.543416 + 0.839463i \(0.317131\pi\)
\(14\) 5.29071 0.0915421i 0.377908 0.00653872i
\(15\) 0 0
\(16\) 15.9617 1.10636i 0.997606 0.0691475i
\(17\) 20.4687 1.20404 0.602020 0.798481i \(-0.294363\pi\)
0.602020 + 0.798481i \(0.294363\pi\)
\(18\) 0 0
\(19\) 6.39258i 0.336452i 0.985748 + 0.168226i \(0.0538038\pi\)
−0.985748 + 0.168226i \(0.946196\pi\)
\(20\) −25.1531 + 0.870679i −1.25765 + 0.0435340i
\(21\) 0 0
\(22\) −33.1556 + 0.573671i −1.50707 + 0.0260760i
\(23\) 29.0945i 1.26498i −0.774568 0.632490i \(-0.782033\pi\)
0.774568 0.632490i \(-0.217967\pi\)
\(24\) 0 0
\(25\) 14.5898 0.583591
\(26\) −0.488852 28.2534i −0.0188020 1.08667i
\(27\) 0 0
\(28\) −0.366113 10.5767i −0.0130755 0.377738i
\(29\) −54.6984 −1.88615 −0.943075 0.332579i \(-0.892081\pi\)
−0.943075 + 0.332579i \(0.892081\pi\)
\(30\) 0 0
\(31\) 14.7296i 0.475150i −0.971369 0.237575i \(-0.923647\pi\)
0.971369 0.237575i \(-0.0763525\pi\)
\(32\) −2.76466 31.8803i −0.0863956 0.996261i
\(33\) 0 0
\(34\) −0.708210 40.9313i −0.0208297 1.20386i
\(35\) 16.6472i 0.475633i
\(36\) 0 0
\(37\) 26.8040 0.724431 0.362216 0.932094i \(-0.382020\pi\)
0.362216 + 0.932094i \(0.382020\pi\)
\(38\) 12.7833 0.221181i 0.336401 0.00582055i
\(39\) 0 0
\(40\) 2.61139 + 50.2685i 0.0652846 + 1.25671i
\(41\) 33.5802 0.819029 0.409515 0.912304i \(-0.365698\pi\)
0.409515 + 0.912304i \(0.365698\pi\)
\(42\) 0 0
\(43\) 3.83239i 0.0891253i 0.999007 + 0.0445627i \(0.0141894\pi\)
−0.999007 + 0.0445627i \(0.985811\pi\)
\(44\) 2.29434 + 66.2814i 0.0521441 + 1.50639i
\(45\) 0 0
\(46\) −58.1804 + 1.00666i −1.26479 + 0.0218839i
\(47\) 27.4693i 0.584453i 0.956349 + 0.292226i \(0.0943961\pi\)
−0.956349 + 0.292226i \(0.905604\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) −0.504801 29.1752i −0.0100960 0.583503i
\(51\) 0 0
\(52\) −56.4815 + 1.95512i −1.08618 + 0.0375984i
\(53\) 21.7113 0.409648 0.204824 0.978799i \(-0.434338\pi\)
0.204824 + 0.978799i \(0.434338\pi\)
\(54\) 0 0
\(55\) 104.324i 1.89679i
\(56\) −21.1375 + 1.09807i −0.377456 + 0.0196083i
\(57\) 0 0
\(58\) 1.89254 + 109.380i 0.0326301 + 1.88587i
\(59\) 54.1344i 0.917532i 0.888557 + 0.458766i \(0.151708\pi\)
−0.888557 + 0.458766i \(0.848292\pi\)
\(60\) 0 0
\(61\) −35.7188 −0.585554 −0.292777 0.956181i \(-0.594579\pi\)
−0.292777 + 0.956181i \(0.594579\pi\)
\(62\) −29.4549 + 0.509641i −0.475079 + 0.00822001i
\(63\) 0 0
\(64\) −63.6555 + 6.63154i −0.994617 + 0.103618i
\(65\) 88.8991 1.36768
\(66\) 0 0
\(67\) 95.4255i 1.42426i 0.702047 + 0.712131i \(0.252270\pi\)
−0.702047 + 0.712131i \(0.747730\pi\)
\(68\) −81.8258 + 2.83241i −1.20332 + 0.0416532i
\(69\) 0 0
\(70\) 33.2894 0.575986i 0.475562 0.00822837i
\(71\) 55.6524i 0.783837i 0.920000 + 0.391919i \(0.128189\pi\)
−0.920000 + 0.391919i \(0.871811\pi\)
\(72\) 0 0
\(73\) 130.476 1.78735 0.893673 0.448719i \(-0.148119\pi\)
0.893673 + 0.448719i \(0.148119\pi\)
\(74\) −0.927408 53.5999i −0.0125325 0.724323i
\(75\) 0 0
\(76\) −0.884592 25.5550i −0.0116394 0.336250i
\(77\) 43.8673 0.569705
\(78\) 0 0
\(79\) 15.6309i 0.197859i 0.995094 + 0.0989295i \(0.0315418\pi\)
−0.995094 + 0.0989295i \(0.968458\pi\)
\(80\) 100.432 6.96126i 1.25540 0.0870158i
\(81\) 0 0
\(82\) −1.16186 67.1503i −0.0141691 0.818907i
\(83\) 49.4495i 0.595777i −0.954601 0.297889i \(-0.903718\pi\)
0.954601 0.297889i \(-0.0962824\pi\)
\(84\) 0 0
\(85\) 128.790 1.51517
\(86\) 7.66363 0.132599i 0.0891120 0.00154185i
\(87\) 0 0
\(88\) 132.464 6.88131i 1.50527 0.0781967i
\(89\) −39.2530 −0.441045 −0.220522 0.975382i \(-0.570776\pi\)
−0.220522 + 0.975382i \(0.570776\pi\)
\(90\) 0 0
\(91\) 37.3813i 0.410784i
\(92\) 4.02604 + 116.309i 0.0437613 + 1.26422i
\(93\) 0 0
\(94\) 54.9303 0.950427i 0.584365 0.0101109i
\(95\) 40.2224i 0.423394i
\(96\) 0 0
\(97\) −171.943 −1.77261 −0.886303 0.463106i \(-0.846735\pi\)
−0.886303 + 0.463106i \(0.846735\pi\)
\(98\) 0.242198 + 13.9979i 0.00247140 + 0.142836i
\(99\) 0 0
\(100\) −58.3241 + 2.01890i −0.583241 + 0.0201890i
\(101\) −113.883 −1.12755 −0.563777 0.825927i \(-0.690652\pi\)
−0.563777 + 0.825927i \(0.690652\pi\)
\(102\) 0 0
\(103\) 93.7629i 0.910319i 0.890410 + 0.455160i \(0.150418\pi\)
−0.890410 + 0.455160i \(0.849582\pi\)
\(104\) 5.86389 + 112.878i 0.0563835 + 1.08537i
\(105\) 0 0
\(106\) −0.751204 43.4161i −0.00708683 0.409586i
\(107\) 48.2088i 0.450549i −0.974295 0.225275i \(-0.927672\pi\)
0.974295 0.225275i \(-0.0723279\pi\)
\(108\) 0 0
\(109\) 89.3790 0.819991 0.409996 0.912088i \(-0.365530\pi\)
0.409996 + 0.912088i \(0.365530\pi\)
\(110\) −208.616 + 3.60956i −1.89651 + 0.0328142i
\(111\) 0 0
\(112\) 2.92715 + 42.2307i 0.0261353 + 0.377060i
\(113\) −93.4667 −0.827139 −0.413569 0.910473i \(-0.635718\pi\)
−0.413569 + 0.910473i \(0.635718\pi\)
\(114\) 0 0
\(115\) 183.064i 1.59186i
\(116\) 218.662 7.56904i 1.88502 0.0652504i
\(117\) 0 0
\(118\) 108.253 1.87303i 0.917395 0.0158731i
\(119\) 54.1551i 0.455085i
\(120\) 0 0
\(121\) −153.905 −1.27194
\(122\) 1.23586 + 71.4269i 0.0101300 + 0.585466i
\(123\) 0 0
\(124\) 2.03826 + 58.8833i 0.0164376 + 0.474866i
\(125\) −65.5016 −0.524013
\(126\) 0 0
\(127\) 208.300i 1.64016i 0.572248 + 0.820081i \(0.306071\pi\)
−0.572248 + 0.820081i \(0.693929\pi\)
\(128\) 15.4635 + 127.062i 0.120809 + 0.992676i
\(129\) 0 0
\(130\) −3.07588 177.772i −0.0236606 1.36747i
\(131\) 67.7695i 0.517324i −0.965968 0.258662i \(-0.916718\pi\)
0.965968 0.258662i \(-0.0832816\pi\)
\(132\) 0 0
\(133\) −16.9132 −0.127167
\(134\) 190.823 3.30169i 1.42405 0.0246395i
\(135\) 0 0
\(136\) 8.49512 + 163.529i 0.0624641 + 1.20242i
\(137\) 13.4127 0.0979029 0.0489514 0.998801i \(-0.484412\pi\)
0.0489514 + 0.998801i \(0.484412\pi\)
\(138\) 0 0
\(139\) 160.382i 1.15383i 0.816804 + 0.576915i \(0.195744\pi\)
−0.816804 + 0.576915i \(0.804256\pi\)
\(140\) −2.30360 66.5488i −0.0164543 0.475349i
\(141\) 0 0
\(142\) 111.288 1.92555i 0.783720 0.0135602i
\(143\) 234.260i 1.63818i
\(144\) 0 0
\(145\) −344.164 −2.37355
\(146\) −4.51443 260.914i −0.0309208 1.78708i
\(147\) 0 0
\(148\) −107.152 + 3.70908i −0.723998 + 0.0250613i
\(149\) 130.824 0.878015 0.439007 0.898483i \(-0.355330\pi\)
0.439007 + 0.898483i \(0.355330\pi\)
\(150\) 0 0
\(151\) 175.855i 1.16460i −0.812974 0.582300i \(-0.802153\pi\)
0.812974 0.582300i \(-0.197847\pi\)
\(152\) −51.0718 + 2.65311i −0.335999 + 0.0174547i
\(153\) 0 0
\(154\) −1.51779 87.7214i −0.00985579 0.569620i
\(155\) 92.6795i 0.597932i
\(156\) 0 0
\(157\) −167.199 −1.06496 −0.532482 0.846441i \(-0.678741\pi\)
−0.532482 + 0.846441i \(0.678741\pi\)
\(158\) 31.2570 0.540822i 0.197829 0.00342293i
\(159\) 0 0
\(160\) −17.3953 200.592i −0.108721 1.25370i
\(161\) 76.9769 0.478118
\(162\) 0 0
\(163\) 220.591i 1.35332i −0.736295 0.676661i \(-0.763426\pi\)
0.736295 0.676661i \(-0.236574\pi\)
\(164\) −134.240 + 4.64676i −0.818539 + 0.0283339i
\(165\) 0 0
\(166\) −98.8842 + 1.71093i −0.595688 + 0.0103068i
\(167\) 64.6529i 0.387143i 0.981086 + 0.193572i \(0.0620072\pi\)
−0.981086 + 0.193572i \(0.937993\pi\)
\(168\) 0 0
\(169\) 30.6236 0.181205
\(170\) −4.45608 257.541i −0.0262123 1.51495i
\(171\) 0 0
\(172\) −0.530318 15.3204i −0.00308324 0.0890720i
\(173\) −237.146 −1.37078 −0.685392 0.728174i \(-0.740369\pi\)
−0.685392 + 0.728174i \(0.740369\pi\)
\(174\) 0 0
\(175\) 38.6009i 0.220577i
\(176\) −18.3438 264.649i −0.104226 1.50369i
\(177\) 0 0
\(178\) 1.35814 + 78.4942i 0.00763000 + 0.440979i
\(179\) 103.153i 0.576275i 0.957589 + 0.288137i \(0.0930360\pi\)
−0.957589 + 0.288137i \(0.906964\pi\)
\(180\) 0 0
\(181\) 43.5702 0.240719 0.120360 0.992730i \(-0.461595\pi\)
0.120360 + 0.992730i \(0.461595\pi\)
\(182\) 74.7515 1.29338i 0.410723 0.00710649i
\(183\) 0 0
\(184\) 232.443 12.0751i 1.26328 0.0656256i
\(185\) 168.652 0.911630
\(186\) 0 0
\(187\) 339.376i 1.81485i
\(188\) −3.80114 109.811i −0.0202188 0.584103i
\(189\) 0 0
\(190\) 80.4327 1.39168i 0.423330 0.00732463i
\(191\) 219.309i 1.14822i 0.818779 + 0.574109i \(0.194651\pi\)
−0.818779 + 0.574109i \(0.805349\pi\)
\(192\) 0 0
\(193\) 9.40273 0.0487188 0.0243594 0.999703i \(-0.492245\pi\)
0.0243594 + 0.999703i \(0.492245\pi\)
\(194\) 5.94916 + 343.834i 0.0306658 + 1.77234i
\(195\) 0 0
\(196\) 27.9832 0.968645i 0.142772 0.00494207i
\(197\) −329.193 −1.67103 −0.835514 0.549469i \(-0.814830\pi\)
−0.835514 + 0.549469i \(0.814830\pi\)
\(198\) 0 0
\(199\) 63.0050i 0.316608i −0.987390 0.158304i \(-0.949397\pi\)
0.987390 0.158304i \(-0.0506026\pi\)
\(200\) 6.05519 + 116.561i 0.0302760 + 0.582805i
\(201\) 0 0
\(202\) 3.94031 + 227.732i 0.0195065 + 1.12739i
\(203\) 144.718i 0.712898i
\(204\) 0 0
\(205\) 211.288 1.03067
\(206\) 187.498 3.24416i 0.910183 0.0157484i
\(207\) 0 0
\(208\) 225.520 15.6316i 1.08423 0.0751518i
\(209\) 105.991 0.507133
\(210\) 0 0
\(211\) 0.702405i 0.00332893i 0.999999 + 0.00166447i \(0.000529817\pi\)
−0.999999 + 0.00166447i \(0.999470\pi\)
\(212\) −86.7933 + 3.00437i −0.409402 + 0.0141715i
\(213\) 0 0
\(214\) −96.4031 + 1.66801i −0.450482 + 0.00779442i
\(215\) 24.1135i 0.112156i
\(216\) 0 0
\(217\) 38.9710 0.179590
\(218\) −3.09248 178.731i −0.0141857 0.819868i
\(219\) 0 0
\(220\) 14.4361 + 417.045i 0.0656186 + 1.89566i
\(221\) 289.199 1.30859
\(222\) 0 0
\(223\) 260.543i 1.16835i 0.811627 + 0.584177i \(0.198582\pi\)
−0.811627 + 0.584177i \(0.801418\pi\)
\(224\) 84.3475 7.31460i 0.376551 0.0326545i
\(225\) 0 0
\(226\) 3.23391 + 186.905i 0.0143094 + 0.827015i
\(227\) 222.146i 0.978617i −0.872111 0.489308i \(-0.837249\pi\)
0.872111 0.489308i \(-0.162751\pi\)
\(228\) 0 0
\(229\) 124.781 0.544893 0.272447 0.962171i \(-0.412167\pi\)
0.272447 + 0.962171i \(0.412167\pi\)
\(230\) −366.073 + 6.33395i −1.59162 + 0.0275389i
\(231\) 0 0
\(232\) −22.7015 436.998i −0.0978511 1.88361i
\(233\) −332.321 −1.42627 −0.713135 0.701027i \(-0.752725\pi\)
−0.713135 + 0.701027i \(0.752725\pi\)
\(234\) 0 0
\(235\) 172.838i 0.735480i
\(236\) −7.49100 216.408i −0.0317415 0.916983i
\(237\) 0 0
\(238\) 108.294 1.87375i 0.455017 0.00787288i
\(239\) 285.085i 1.19282i 0.802679 + 0.596412i \(0.203407\pi\)
−0.802679 + 0.596412i \(0.796593\pi\)
\(240\) 0 0
\(241\) 89.2332 0.370262 0.185131 0.982714i \(-0.440729\pi\)
0.185131 + 0.982714i \(0.440729\pi\)
\(242\) 5.32507 + 307.765i 0.0220044 + 1.27175i
\(243\) 0 0
\(244\) 142.790 4.94269i 0.585204 0.0202569i
\(245\) −44.0443 −0.179773
\(246\) 0 0
\(247\) 90.3197i 0.365667i
\(248\) 117.679 6.11325i 0.474510 0.0246502i
\(249\) 0 0
\(250\) 2.26633 + 130.984i 0.00906533 + 0.523935i
\(251\) 83.4611i 0.332514i 0.986082 + 0.166257i \(0.0531682\pi\)
−0.986082 + 0.166257i \(0.946832\pi\)
\(252\) 0 0
\(253\) −482.395 −1.90670
\(254\) 416.539 7.20712i 1.63992 0.0283745i
\(255\) 0 0
\(256\) 253.552 35.3188i 0.990437 0.137964i
\(257\) 29.8619 0.116194 0.0580971 0.998311i \(-0.481497\pi\)
0.0580971 + 0.998311i \(0.481497\pi\)
\(258\) 0 0
\(259\) 70.9166i 0.273809i
\(260\) −355.384 + 12.3017i −1.36686 + 0.0473141i
\(261\) 0 0
\(262\) −135.519 + 2.34480i −0.517247 + 0.00894962i
\(263\) 245.304i 0.932717i 0.884596 + 0.466358i \(0.154434\pi\)
−0.884596 + 0.466358i \(0.845566\pi\)
\(264\) 0 0
\(265\) 136.608 0.515504
\(266\) 0.585190 + 33.8213i 0.00219996 + 0.127148i
\(267\) 0 0
\(268\) −13.2048 381.474i −0.0492716 1.42341i
\(269\) 18.9441 0.0704241 0.0352120 0.999380i \(-0.488789\pi\)
0.0352120 + 0.999380i \(0.488789\pi\)
\(270\) 0 0
\(271\) 278.928i 1.02925i −0.857414 0.514626i \(-0.827931\pi\)
0.857414 0.514626i \(-0.172069\pi\)
\(272\) 326.715 22.6458i 1.20116 0.0832564i
\(273\) 0 0
\(274\) −0.464074 26.8214i −0.00169370 0.0978882i
\(275\) 241.902i 0.879644i
\(276\) 0 0
\(277\) −206.348 −0.744938 −0.372469 0.928045i \(-0.621489\pi\)
−0.372469 + 0.928045i \(0.621489\pi\)
\(278\) 320.717 5.54917i 1.15366 0.0199610i
\(279\) 0 0
\(280\) −132.998 + 6.90908i −0.474993 + 0.0246753i
\(281\) 262.775 0.935142 0.467571 0.883956i \(-0.345129\pi\)
0.467571 + 0.883956i \(0.345129\pi\)
\(282\) 0 0
\(283\) 543.508i 1.92052i −0.279101 0.960262i \(-0.590037\pi\)
0.279101 0.960262i \(-0.409963\pi\)
\(284\) −7.70107 222.477i −0.0271164 0.783368i
\(285\) 0 0
\(286\) −468.449 + 8.10530i −1.63793 + 0.0283402i
\(287\) 88.8448i 0.309564i
\(288\) 0 0
\(289\) 129.967 0.449714
\(290\) 11.9080 + 688.226i 0.0410619 + 2.37319i
\(291\) 0 0
\(292\) −521.593 + 18.0550i −1.78628 + 0.0618323i
\(293\) −19.1934 −0.0655064 −0.0327532 0.999463i \(-0.510428\pi\)
−0.0327532 + 0.999463i \(0.510428\pi\)
\(294\) 0 0
\(295\) 340.616i 1.15463i
\(296\) 11.1245 + 214.143i 0.0375826 + 0.723456i
\(297\) 0 0
\(298\) −4.52647 261.609i −0.0151895 0.877883i
\(299\) 411.072i 1.37482i
\(300\) 0 0
\(301\) −10.1395 −0.0336862
\(302\) −351.657 + 6.08451i −1.16443 + 0.0201474i
\(303\) 0 0
\(304\) 7.07250 + 102.037i 0.0232648 + 0.335646i
\(305\) −224.744 −0.736866
\(306\) 0 0
\(307\) 543.121i 1.76912i 0.466423 + 0.884562i \(0.345542\pi\)
−0.466423 + 0.884562i \(0.654458\pi\)
\(308\) −175.364 + 6.07026i −0.569364 + 0.0197086i
\(309\) 0 0
\(310\) −185.331 + 3.20668i −0.597843 + 0.0103441i
\(311\) 183.154i 0.588920i −0.955664 0.294460i \(-0.904860\pi\)
0.955664 0.294460i \(-0.0951398\pi\)
\(312\) 0 0
\(313\) 513.858 1.64172 0.820859 0.571131i \(-0.193495\pi\)
0.820859 + 0.571131i \(0.193495\pi\)
\(314\) 5.78504 + 334.349i 0.0184237 + 1.06481i
\(315\) 0 0
\(316\) −2.16297 62.4860i −0.00684483 0.197741i
\(317\) 559.731 1.76571 0.882857 0.469642i \(-0.155617\pi\)
0.882857 + 0.469642i \(0.155617\pi\)
\(318\) 0 0
\(319\) 906.914i 2.84299i
\(320\) −400.523 + 41.7259i −1.25163 + 0.130393i
\(321\) 0 0
\(322\) −2.66337 153.931i −0.00827135 0.478046i
\(323\) 130.848i 0.405102i
\(324\) 0 0
\(325\) 206.136 0.634265
\(326\) −441.117 + 7.63239i −1.35312 + 0.0234122i
\(327\) 0 0
\(328\) 13.9368 + 268.280i 0.0424902 + 0.817926i
\(329\) −72.6769 −0.220902
\(330\) 0 0
\(331\) 379.794i 1.14741i −0.819061 0.573707i \(-0.805505\pi\)
0.819061 0.573707i \(-0.194495\pi\)
\(332\) 6.84271 + 197.680i 0.0206106 + 0.595420i
\(333\) 0 0
\(334\) 129.286 2.23697i 0.387085 0.00669751i
\(335\) 600.421i 1.79230i
\(336\) 0 0
\(337\) −117.618 −0.349015 −0.174507 0.984656i \(-0.555833\pi\)
−0.174507 + 0.984656i \(0.555833\pi\)
\(338\) −1.05957 61.2380i −0.00313481 0.181178i
\(339\) 0 0
\(340\) −514.851 + 17.8217i −1.51427 + 0.0524167i
\(341\) −244.222 −0.716192
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) −30.6178 + 1.59056i −0.0890053 + 0.00462371i
\(345\) 0 0
\(346\) 8.20516 + 474.221i 0.0237143 + 1.37058i
\(347\) 302.706i 0.872351i −0.899862 0.436175i \(-0.856333\pi\)
0.899862 0.436175i \(-0.143667\pi\)
\(348\) 0 0
\(349\) 83.1588 0.238277 0.119139 0.992878i \(-0.461987\pi\)
0.119139 + 0.992878i \(0.461987\pi\)
\(350\) 77.1902 1.33558i 0.220543 0.00381593i
\(351\) 0 0
\(352\) −528.585 + 45.8388i −1.50166 + 0.130224i
\(353\) 277.478 0.786057 0.393028 0.919526i \(-0.371427\pi\)
0.393028 + 0.919526i \(0.371427\pi\)
\(354\) 0 0
\(355\) 350.167i 0.986387i
\(356\) 156.918 5.43175i 0.440781 0.0152577i
\(357\) 0 0
\(358\) 206.276 3.56906i 0.576189 0.00996945i
\(359\) 76.3214i 0.212594i 0.994334 + 0.106297i \(0.0338995\pi\)
−0.994334 + 0.106297i \(0.966101\pi\)
\(360\) 0 0
\(361\) 320.135 0.886800
\(362\) −1.50751 87.1273i −0.00416440 0.240683i
\(363\) 0 0
\(364\) −5.17275 149.436i −0.0142109 0.410538i
\(365\) 820.962 2.24921
\(366\) 0 0
\(367\) 176.403i 0.480663i −0.970691 0.240332i \(-0.922744\pi\)
0.970691 0.240332i \(-0.0772562\pi\)
\(368\) −32.1890 464.398i −0.0874702 1.26195i
\(369\) 0 0
\(370\) −5.83529 337.253i −0.0157710 0.911494i
\(371\) 57.4428i 0.154832i
\(372\) 0 0
\(373\) 57.5272 0.154229 0.0771143 0.997022i \(-0.475429\pi\)
0.0771143 + 0.997022i \(0.475429\pi\)
\(374\) −678.651 + 11.7423i −1.81458 + 0.0313965i
\(375\) 0 0
\(376\) −219.458 + 11.4006i −0.583666 + 0.0303207i
\(377\) −772.823 −2.04993
\(378\) 0 0
\(379\) 412.402i 1.08813i −0.839042 0.544066i \(-0.816884\pi\)
0.839042 0.544066i \(-0.183116\pi\)
\(380\) −5.56589 160.793i −0.0146471 0.423140i
\(381\) 0 0
\(382\) 438.553 7.58803i 1.14805 0.0198640i
\(383\) 583.323i 1.52304i 0.648143 + 0.761518i \(0.275546\pi\)
−0.648143 + 0.761518i \(0.724454\pi\)
\(384\) 0 0
\(385\) 276.015 0.716921
\(386\) −0.325331 18.8026i −0.000842826 0.0487115i
\(387\) 0 0
\(388\) 687.360 23.7931i 1.77155 0.0613224i
\(389\) −64.4937 −0.165794 −0.0828968 0.996558i \(-0.526417\pi\)
−0.0828968 + 0.996558i \(0.526417\pi\)
\(390\) 0 0
\(391\) 595.527i 1.52309i
\(392\) −2.90521 55.9246i −0.00741125 0.142665i
\(393\) 0 0
\(394\) 11.3899 + 658.287i 0.0289085 + 1.67078i
\(395\) 98.3500i 0.248987i
\(396\) 0 0
\(397\) −0.702051 −0.00176839 −0.000884195 1.00000i \(-0.500281\pi\)
−0.000884195 1.00000i \(0.500281\pi\)
\(398\) −125.991 + 2.17995i −0.316561 + 0.00547727i
\(399\) 0 0
\(400\) 232.877 16.1415i 0.582194 0.0403538i
\(401\) −61.3178 −0.152912 −0.0764561 0.997073i \(-0.524360\pi\)
−0.0764561 + 0.997073i \(0.524360\pi\)
\(402\) 0 0
\(403\) 208.113i 0.516408i
\(404\) 455.259 15.7589i 1.12688 0.0390071i
\(405\) 0 0
\(406\) −289.393 + 5.00720i −0.712791 + 0.0123330i
\(407\) 444.417i 1.09193i
\(408\) 0 0
\(409\) −109.489 −0.267700 −0.133850 0.991002i \(-0.542734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(410\) −7.31049 422.513i −0.0178305 1.03052i
\(411\) 0 0
\(412\) −12.9747 374.827i −0.0314920 0.909774i
\(413\) −143.226 −0.346795
\(414\) 0 0
\(415\) 311.138i 0.749731i
\(416\) −39.0614 450.432i −0.0938975 1.08277i
\(417\) 0 0
\(418\) −3.66724 211.950i −0.00877331 0.507057i
\(419\) 312.627i 0.746128i −0.927806 0.373064i \(-0.878307\pi\)
0.927806 0.373064i \(-0.121693\pi\)
\(420\) 0 0
\(421\) 633.267 1.50420 0.752099 0.659050i \(-0.229042\pi\)
0.752099 + 0.659050i \(0.229042\pi\)
\(422\) 1.40460 0.0243030i 0.00332844 5.75900e-5i
\(423\) 0 0
\(424\) 9.01085 + 173.457i 0.0212520 + 0.409096i
\(425\) 298.633 0.702667
\(426\) 0 0
\(427\) 94.5031i 0.221319i
\(428\) 6.67103 + 192.720i 0.0155865 + 0.450280i
\(429\) 0 0
\(430\) 48.2199 0.834320i 0.112139 0.00194028i
\(431\) 46.7851i 0.108550i −0.998526 0.0542750i \(-0.982715\pi\)
0.998526 0.0542750i \(-0.0172848\pi\)
\(432\) 0 0
\(433\) 71.4224 0.164948 0.0824739 0.996593i \(-0.473718\pi\)
0.0824739 + 0.996593i \(0.473718\pi\)
\(434\) −1.34838 77.9303i −0.00310687 0.179563i
\(435\) 0 0
\(436\) −357.302 + 12.3681i −0.819500 + 0.0283672i
\(437\) 185.989 0.425605
\(438\) 0 0
\(439\) 0.829943i 0.00189053i −1.00000 0.000945266i \(-0.999699\pi\)
1.00000 0.000945266i \(-0.000300887\pi\)
\(440\) 833.466 43.2975i 1.89424 0.0984033i
\(441\) 0 0
\(442\) −10.0062 578.311i −0.0226384 1.30839i
\(443\) 770.065i 1.73830i −0.494552 0.869148i \(-0.664668\pi\)
0.494552 0.869148i \(-0.335332\pi\)
\(444\) 0 0
\(445\) −246.981 −0.555014
\(446\) 521.008 9.01469i 1.16818 0.0202123i
\(447\) 0 0
\(448\) −17.5454 168.417i −0.0391638 0.375930i
\(449\) 80.0955 0.178386 0.0891932 0.996014i \(-0.471571\pi\)
0.0891932 + 0.996014i \(0.471571\pi\)
\(450\) 0 0
\(451\) 556.769i 1.23452i
\(452\) 373.643 12.9337i 0.826644 0.0286144i
\(453\) 0 0
\(454\) −444.226 + 7.68617i −0.978470 + 0.0169299i
\(455\) 235.205i 0.516934i
\(456\) 0 0
\(457\) −178.912 −0.391493 −0.195747 0.980654i \(-0.562713\pi\)
−0.195747 + 0.980654i \(0.562713\pi\)
\(458\) −4.31736 249.524i −0.00942656 0.544812i
\(459\) 0 0
\(460\) 25.3320 + 731.818i 0.0550696 + 1.59091i
\(461\) 320.864 0.696017 0.348009 0.937491i \(-0.386858\pi\)
0.348009 + 0.937491i \(0.386858\pi\)
\(462\) 0 0
\(463\) 597.651i 1.29082i 0.763835 + 0.645411i \(0.223314\pi\)
−0.763835 + 0.645411i \(0.776686\pi\)
\(464\) −873.079 + 60.5161i −1.88164 + 0.130423i
\(465\) 0 0
\(466\) 11.4982 + 664.542i 0.0246742 + 1.42606i
\(467\) 578.307i 1.23834i −0.785255 0.619172i \(-0.787468\pi\)
0.785255 0.619172i \(-0.212532\pi\)
\(468\) 0 0
\(469\) −252.472 −0.538320
\(470\) 345.624 5.98013i 0.735370 0.0127237i
\(471\) 0 0
\(472\) −432.492 + 22.4674i −0.916297 + 0.0476004i
\(473\) 63.5420 0.134338
\(474\) 0 0
\(475\) 93.2663i 0.196350i
\(476\) −7.49386 216.491i −0.0157434 0.454812i
\(477\) 0 0
\(478\) 570.084 9.86383i 1.19264 0.0206356i
\(479\) 543.921i 1.13554i 0.823189 + 0.567768i \(0.192193\pi\)
−0.823189 + 0.567768i \(0.807807\pi\)
\(480\) 0 0
\(481\) 378.708 0.787336
\(482\) −3.08744 178.440i −0.00640547 0.370207i
\(483\) 0 0
\(484\) 615.253 21.2971i 1.27118 0.0440022i
\(485\) −1081.87 −2.23066
\(486\) 0 0
\(487\) 25.1657i 0.0516750i 0.999666 + 0.0258375i \(0.00822524\pi\)
−0.999666 + 0.0258375i \(0.991775\pi\)
\(488\) −14.8244 285.366i −0.0303778 0.584766i
\(489\) 0 0
\(490\) 1.52392 + 88.0754i 0.00311003 + 0.179746i
\(491\) 876.015i 1.78414i 0.451894 + 0.892072i \(0.350749\pi\)
−0.451894 + 0.892072i \(0.649251\pi\)
\(492\) 0 0
\(493\) −1119.60 −2.27100
\(494\) 180.612 3.12503i 0.365612 0.00632597i
\(495\) 0 0
\(496\) −16.2963 235.110i −0.0328554 0.474013i
\(497\) −147.243 −0.296263
\(498\) 0 0
\(499\) 9.06767i 0.0181717i −0.999959 0.00908584i \(-0.997108\pi\)
0.999959 0.00908584i \(-0.00289215\pi\)
\(500\) 261.850 9.06397i 0.523699 0.0181279i
\(501\) 0 0
\(502\) 166.897 2.88772i 0.332465 0.00575244i
\(503\) 433.976i 0.862774i −0.902167 0.431387i \(-0.858024\pi\)
0.902167 0.431387i \(-0.141976\pi\)
\(504\) 0 0
\(505\) −716.556 −1.41892
\(506\) 16.6907 + 964.646i 0.0329856 + 1.90642i
\(507\) 0 0
\(508\) −28.8242 832.703i −0.0567405 1.63918i
\(509\) 335.775 0.659675 0.329838 0.944038i \(-0.393006\pi\)
0.329838 + 0.944038i \(0.393006\pi\)
\(510\) 0 0
\(511\) 345.208i 0.675553i
\(512\) −79.3998 505.806i −0.155078 0.987902i
\(513\) 0 0
\(514\) −1.03321 59.7149i −0.00201014 0.116177i
\(515\) 589.960i 1.14555i
\(516\) 0 0
\(517\) 455.448 0.880944
\(518\) 141.812 2.45369i 0.273768 0.00473685i
\(519\) 0 0
\(520\) 36.8958 + 710.235i 0.0709535 + 1.36584i
\(521\) −540.822 −1.03805 −0.519023 0.854760i \(-0.673704\pi\)
−0.519023 + 0.854760i \(0.673704\pi\)
\(522\) 0 0
\(523\) 337.109i 0.644568i 0.946643 + 0.322284i \(0.104451\pi\)
−0.946643 + 0.322284i \(0.895549\pi\)
\(524\) 9.37780 + 270.916i 0.0178966 + 0.517015i
\(525\) 0 0
\(526\) 490.535 8.48745i 0.932577 0.0161358i
\(527\) 301.497i 0.572100i
\(528\) 0 0
\(529\) −317.492 −0.600175
\(530\) −4.72661 273.176i −0.00891812 0.515427i
\(531\) 0 0
\(532\) 67.6122 2.34041i 0.127091 0.00439927i
\(533\) 474.449 0.890147
\(534\) 0 0
\(535\) 303.331i 0.566975i
\(536\) −762.376 + 39.6045i −1.42234 + 0.0738889i
\(537\) 0 0
\(538\) −0.655458 37.8825i −0.00121832 0.0704135i
\(539\) 116.062i 0.215328i
\(540\) 0 0
\(541\) 210.355 0.388827 0.194413 0.980920i \(-0.437720\pi\)
0.194413 + 0.980920i \(0.437720\pi\)
\(542\) −557.772 + 9.65079i −1.02910 + 0.0178059i
\(543\) 0 0
\(544\) −56.5890 652.549i −0.104024 1.19954i
\(545\) 562.376 1.03188
\(546\) 0 0
\(547\) 228.588i 0.417894i 0.977927 + 0.208947i \(0.0670036\pi\)
−0.977927 + 0.208947i \(0.932996\pi\)
\(548\) −53.6187 + 1.85602i −0.0978443 + 0.00338690i
\(549\) 0 0
\(550\) −483.732 + 8.36973i −0.879513 + 0.0152177i
\(551\) 349.664i 0.634599i
\(552\) 0 0
\(553\) −41.3554 −0.0747837
\(554\) 7.13956 + 412.634i 0.0128873 + 0.744826i
\(555\) 0 0
\(556\) −22.1934 641.145i −0.0399161 1.15314i
\(557\) −129.632 −0.232732 −0.116366 0.993206i \(-0.537125\pi\)
−0.116366 + 0.993206i \(0.537125\pi\)
\(558\) 0 0
\(559\) 54.1471i 0.0968643i
\(560\) 18.4178 + 265.717i 0.0328889 + 0.474495i
\(561\) 0 0
\(562\) −9.09192 525.471i −0.0161778 0.935002i
\(563\) 718.440i 1.27609i −0.769998 0.638046i \(-0.779743\pi\)
0.769998 0.638046i \(-0.220257\pi\)
\(564\) 0 0
\(565\) −588.096 −1.04088
\(566\) −1086.85 + 18.8052i −1.92024 + 0.0332247i
\(567\) 0 0
\(568\) −444.620 + 23.0974i −0.782782 + 0.0406645i
\(569\) −736.365 −1.29414 −0.647069 0.762431i \(-0.724006\pi\)
−0.647069 + 0.762431i \(0.724006\pi\)
\(570\) 0 0
\(571\) 161.022i 0.282001i 0.990010 + 0.141000i \(0.0450319\pi\)
−0.990010 + 0.141000i \(0.954968\pi\)
\(572\) 32.4163 + 936.478i 0.0566719 + 1.63720i
\(573\) 0 0
\(574\) 177.663 3.07400i 0.309518 0.00535540i
\(575\) 424.483i 0.738230i
\(576\) 0 0
\(577\) 748.940 1.29799 0.648995 0.760793i \(-0.275190\pi\)
0.648995 + 0.760793i \(0.275190\pi\)
\(578\) −4.49683 259.896i −0.00777998 0.449647i
\(579\) 0 0
\(580\) 1375.83 47.6247i 2.37213 0.0821116i
\(581\) 130.831 0.225183
\(582\) 0 0
\(583\) 359.980i 0.617461i
\(584\) 54.1516 + 1042.40i 0.0927253 + 1.78494i
\(585\) 0 0
\(586\) 0.664084 + 38.3810i 0.00113325 + 0.0654966i
\(587\) 261.696i 0.445819i −0.974839 0.222910i \(-0.928444\pi\)
0.974839 0.222910i \(-0.0715555\pi\)
\(588\) 0 0
\(589\) 94.1605 0.159865
\(590\) 681.130 11.7852i 1.15446 0.0199749i
\(591\) 0 0
\(592\) 427.837 29.6548i 0.722698 0.0500926i
\(593\) 284.492 0.479750 0.239875 0.970804i \(-0.422894\pi\)
0.239875 + 0.970804i \(0.422894\pi\)
\(594\) 0 0
\(595\) 340.746i 0.572682i
\(596\) −522.984 + 18.1032i −0.877489 + 0.0303745i
\(597\) 0 0
\(598\) −822.020 + 14.2229i −1.37462 + 0.0237842i
\(599\) 358.608i 0.598678i −0.954147 0.299339i \(-0.903234\pi\)
0.954147 0.299339i \(-0.0967662\pi\)
\(600\) 0 0
\(601\) −404.112 −0.672399 −0.336200 0.941791i \(-0.609142\pi\)
−0.336200 + 0.941791i \(0.609142\pi\)
\(602\) 0.350825 + 20.2761i 0.000582765 + 0.0336812i
\(603\) 0 0
\(604\) 24.3344 + 702.997i 0.0402887 + 1.16390i
\(605\) −968.378 −1.60063
\(606\) 0 0
\(607\) 608.215i 1.00200i −0.865447 0.501001i \(-0.832965\pi\)
0.865447 0.501001i \(-0.167035\pi\)
\(608\) 203.798 17.6733i 0.335194 0.0290679i
\(609\) 0 0
\(610\) 7.77607 + 449.421i 0.0127476 + 0.736756i
\(611\) 388.108i 0.635202i
\(612\) 0 0
\(613\) −741.906 −1.21029 −0.605143 0.796117i \(-0.706884\pi\)
−0.605143 + 0.796117i \(0.706884\pi\)
\(614\) 1086.08 18.7918i 1.76886 0.0306055i
\(615\) 0 0
\(616\) 18.2062 + 350.466i 0.0295556 + 0.568938i
\(617\) −788.372 −1.27775 −0.638875 0.769310i \(-0.720600\pi\)
−0.638875 + 0.769310i \(0.720600\pi\)
\(618\) 0 0
\(619\) 1053.85i 1.70251i 0.524754 + 0.851254i \(0.324157\pi\)
−0.524754 + 0.851254i \(0.675843\pi\)
\(620\) 12.8248 + 370.496i 0.0206852 + 0.597575i
\(621\) 0 0
\(622\) −366.253 + 6.33707i −0.588832 + 0.0101882i
\(623\) 103.854i 0.166699i
\(624\) 0 0
\(625\) −776.883 −1.24301
\(626\) −17.7793 1027.56i −0.0284014 1.64147i
\(627\) 0 0
\(628\) 668.398 23.1367i 1.06433 0.0368419i
\(629\) 548.642 0.872245
\(630\) 0 0
\(631\) 729.494i 1.15609i 0.816004 + 0.578046i \(0.196185\pi\)
−0.816004 + 0.578046i \(0.803815\pi\)
\(632\) −124.879 + 6.48728i −0.197593 + 0.0102647i
\(633\) 0 0
\(634\) −19.3665 1119.30i −0.0305465 1.76545i
\(635\) 1310.63i 2.06399i
\(636\) 0 0
\(637\) −98.9018 −0.155262
\(638\) 1813.56 31.3789i 2.84256 0.0491832i
\(639\) 0 0
\(640\) 97.2973 + 799.482i 0.152027 + 1.24919i
\(641\) −258.186 −0.402787 −0.201393 0.979510i \(-0.564547\pi\)
−0.201393 + 0.979510i \(0.564547\pi\)
\(642\) 0 0
\(643\) 844.440i 1.31328i −0.754203 0.656641i \(-0.771977\pi\)
0.754203 0.656641i \(-0.228023\pi\)
\(644\) −307.723 + 10.6519i −0.477831 + 0.0165402i
\(645\) 0 0
\(646\) 261.656 4.52729i 0.405041 0.00700819i
\(647\) 94.5538i 0.146142i 0.997327 + 0.0730709i \(0.0232799\pi\)
−0.997327 + 0.0730709i \(0.976720\pi\)
\(648\) 0 0
\(649\) 897.563 1.38299
\(650\) −7.13224 412.211i −0.0109727 0.634170i
\(651\) 0 0
\(652\) 30.5250 + 881.838i 0.0468174 + 1.35251i
\(653\) 239.621 0.366954 0.183477 0.983024i \(-0.441265\pi\)
0.183477 + 0.983024i \(0.441265\pi\)
\(654\) 0 0
\(655\) 426.408i 0.651005i
\(656\) 535.997 37.1518i 0.817069 0.0566338i
\(657\) 0 0
\(658\) 2.51459 + 145.332i 0.00382157 + 0.220869i
\(659\) 150.618i 0.228555i 0.993449 + 0.114278i \(0.0364553\pi\)
−0.993449 + 0.114278i \(0.963545\pi\)
\(660\) 0 0
\(661\) −575.893 −0.871246 −0.435623 0.900129i \(-0.643472\pi\)
−0.435623 + 0.900129i \(0.643472\pi\)
\(662\) −759.474 + 13.1407i −1.14724 + 0.0198500i
\(663\) 0 0
\(664\) 395.063 20.5230i 0.594975 0.0309082i
\(665\) −106.418 −0.160028
\(666\) 0 0
\(667\) 1591.42i 2.38594i
\(668\) −8.94653 258.457i −0.0133930 0.386912i
\(669\) 0 0
\(670\) 1200.66 20.7744i 1.79203 0.0310065i
\(671\) 592.227i 0.882604i
\(672\) 0 0
\(673\) −614.833 −0.913571 −0.456785 0.889577i \(-0.650999\pi\)
−0.456785 + 0.889577i \(0.650999\pi\)
\(674\) 4.06954 + 235.201i 0.00603789 + 0.348962i
\(675\) 0 0
\(676\) −122.421 + 4.23763i −0.181096 + 0.00626868i
\(677\) 308.666 0.455933 0.227966 0.973669i \(-0.426792\pi\)
0.227966 + 0.973669i \(0.426792\pi\)
\(678\) 0 0
\(679\) 454.918i 0.669982i
\(680\) 53.4517 + 1028.93i 0.0786054 + 1.51313i
\(681\) 0 0
\(682\) 8.44998 + 488.370i 0.0123900 + 0.716085i
\(683\) 143.442i 0.210018i 0.994471 + 0.105009i \(0.0334871\pi\)
−0.994471 + 0.105009i \(0.966513\pi\)
\(684\) 0 0
\(685\) 84.3932 0.123202
\(686\) −37.0350 + 0.640794i −0.0539868 + 0.000934103i
\(687\) 0 0
\(688\) 4.24000 + 61.1715i 0.00616279 + 0.0889120i
\(689\) 306.755 0.445218
\(690\) 0 0
\(691\) 366.656i 0.530616i 0.964164 + 0.265308i \(0.0854737\pi\)
−0.964164 + 0.265308i \(0.914526\pi\)
\(692\) 948.015 32.8157i 1.36996 0.0474216i
\(693\) 0 0
\(694\) −605.321 + 10.4735i −0.872220 + 0.0150915i
\(695\) 1009.13i 1.45199i
\(696\) 0 0
\(697\) 687.343 0.986145
\(698\) −2.87726 166.293i −0.00412215 0.238242i
\(699\) 0 0
\(700\) −5.34151 154.311i −0.00763073 0.220444i
\(701\) −125.995 −0.179736 −0.0898681 0.995954i \(-0.528645\pi\)
−0.0898681 + 0.995954i \(0.528645\pi\)
\(702\) 0 0
\(703\) 171.347i 0.243736i
\(704\) 109.953 + 1055.43i 0.156183 + 1.49918i
\(705\) 0 0
\(706\) −9.60064 554.873i −0.0135986 0.785939i
\(707\) 301.306i 0.426175i
\(708\) 0 0
\(709\) −159.688 −0.225230 −0.112615 0.993639i \(-0.535923\pi\)
−0.112615 + 0.993639i \(0.535923\pi\)
\(710\) 700.230 12.1157i 0.986239 0.0170643i
\(711\) 0 0
\(712\) −16.2912 313.601i −0.0228809 0.440451i
\(713\) −428.552 −0.601055
\(714\) 0 0
\(715\) 1473.97i 2.06150i
\(716\) −14.2741 412.366i −0.0199359 0.575930i
\(717\) 0 0
\(718\) 152.620 2.64069i 0.212563 0.00367785i
\(719\) 1368.60i 1.90348i 0.306899 + 0.951742i \(0.400708\pi\)
−0.306899 + 0.951742i \(0.599292\pi\)
\(720\) 0 0
\(721\) −248.073 −0.344068
\(722\) −11.0766 640.174i −0.0153415 0.886668i
\(723\) 0 0
\(724\) −174.176 + 6.02914i −0.240575 + 0.00832755i
\(725\) −798.036 −1.10074
\(726\) 0 0
\(727\) 510.747i 0.702540i 0.936274 + 0.351270i \(0.114250\pi\)
−0.936274 + 0.351270i \(0.885750\pi\)
\(728\) −298.648 + 15.5144i −0.410231 + 0.0213110i
\(729\) 0 0
\(730\) −28.4050 1641.68i −0.0389109 2.24887i
\(731\) 78.4440i 0.107311i
\(732\) 0 0
\(733\) −774.969 −1.05726 −0.528628 0.848853i \(-0.677293\pi\)
−0.528628 + 0.848853i \(0.677293\pi\)
\(734\) −352.754 + 6.10350i −0.480592 + 0.00831539i
\(735\) 0 0
\(736\) −927.544 + 80.4365i −1.26025 + 0.109289i
\(737\) 1582.18 2.14679
\(738\) 0 0
\(739\) 1349.26i 1.82579i −0.408194 0.912895i \(-0.633841\pi\)
0.408194 0.912895i \(-0.366159\pi\)
\(740\) −674.203 + 23.3376i −0.911085 + 0.0315374i
\(741\) 0 0
\(742\) 114.868 1.98750i 0.154809 0.00267857i
\(743\) 853.994i 1.14939i −0.818369 0.574693i \(-0.805122\pi\)
0.818369 0.574693i \(-0.194878\pi\)
\(744\) 0 0
\(745\) 823.151 1.10490
\(746\) −1.99042 115.037i −0.00266813 0.154205i
\(747\) 0 0
\(748\) 46.9622 + 1356.69i 0.0627837 + 1.81376i
\(749\) 127.548 0.170292
\(750\) 0 0
\(751\) 509.524i 0.678460i −0.940703 0.339230i \(-0.889833\pi\)
0.940703 0.339230i \(-0.110167\pi\)
\(752\) 30.3909 + 438.456i 0.0404135 + 0.583054i
\(753\) 0 0
\(754\) 26.7394 + 1545.42i 0.0354634 + 2.04962i
\(755\) 1106.48i 1.46554i
\(756\) 0 0
\(757\) 1373.83 1.81484 0.907418 0.420228i \(-0.138050\pi\)
0.907418 + 0.420228i \(0.138050\pi\)
\(758\) −824.681 + 14.2690i −1.08797 + 0.0188245i
\(759\) 0 0
\(760\) −321.346 + 16.6935i −0.422823 + 0.0219651i
\(761\) 1165.32 1.53130 0.765652 0.643255i \(-0.222417\pi\)
0.765652 + 0.643255i \(0.222417\pi\)
\(762\) 0 0
\(763\) 236.475i 0.309927i
\(764\) −30.3476 876.713i −0.0397220 1.14753i
\(765\) 0 0
\(766\) 1166.47 20.1828i 1.52281 0.0263483i
\(767\) 764.855i 0.997204i
\(768\) 0 0
\(769\) −686.335 −0.892503 −0.446251 0.894908i \(-0.647241\pi\)
−0.446251 + 0.894908i \(0.647241\pi\)
\(770\) −9.55001 551.947i −0.0124026 0.716814i
\(771\) 0 0
\(772\) −37.5884 + 1.30113i −0.0486896 + 0.00168540i
\(773\) −244.058 −0.315729 −0.157864 0.987461i \(-0.550461\pi\)
−0.157864 + 0.987461i \(0.550461\pi\)
\(774\) 0 0
\(775\) 214.902i 0.277293i
\(776\) −71.3614 1373.69i −0.0919606 1.77022i
\(777\) 0 0
\(778\) 2.23146 + 128.968i 0.00286820 + 0.165769i
\(779\) 214.664i 0.275564i
\(780\) 0 0
\(781\) 922.733 1.18148
\(782\) −1190.88 + 20.6050i −1.52286 + 0.0263491i
\(783\) 0 0
\(784\) −111.732 + 7.74452i −0.142515 + 0.00987822i
\(785\) −1052.03 −1.34016
\(786\) 0 0
\(787\) 959.027i 1.21859i −0.792945 0.609293i \(-0.791453\pi\)
0.792945 0.609293i \(-0.208547\pi\)
\(788\) 1315.98 45.5530i 1.67003 0.0578083i
\(789\) 0 0
\(790\) 196.671 3.40288i 0.248950 0.00430744i
\(791\) 247.290i 0.312629i
\(792\) 0 0
\(793\) −504.665 −0.636399
\(794\) 0.0242907 + 1.40389i 3.05928e−5 + 0.00176812i
\(795\) 0 0
\(796\) 8.71850 + 251.869i 0.0109529 + 0.316419i
\(797\) −24.5322 −0.0307807 −0.0153903 0.999882i \(-0.504899\pi\)
−0.0153903 + 0.999882i \(0.504899\pi\)
\(798\) 0 0
\(799\) 562.260i 0.703705i
\(800\) −40.3357 465.127i −0.0504196 0.581408i
\(801\) 0 0
\(802\) 2.12157 + 122.617i 0.00264535 + 0.152889i
\(803\) 2163.33i 2.69406i
\(804\) 0 0
\(805\) 484.342 0.601667
\(806\) −416.163 + 7.20062i −0.516331 + 0.00893377i
\(807\) 0 0
\(808\) −47.2649 909.837i −0.0584961 1.12604i
\(809\) −673.148 −0.832074 −0.416037 0.909348i \(-0.636581\pi\)
−0.416037 + 0.909348i \(0.636581\pi\)
\(810\) 0 0
\(811\) 386.219i 0.476226i −0.971237 0.238113i \(-0.923471\pi\)
0.971237 0.238113i \(-0.0765288\pi\)
\(812\) 20.0258 + 578.527i 0.0246623 + 0.712471i
\(813\) 0 0
\(814\) −888.701 + 15.3767i −1.09177 + 0.0188903i
\(815\) 1387.97i 1.70303i
\(816\) 0 0
\(817\) −24.4989 −0.0299864
\(818\) 3.78830 + 218.946i 0.00463117 + 0.267660i
\(819\) 0 0
\(820\) −844.646 + 29.2376i −1.03006 + 0.0356556i
\(821\) −5.93033 −0.00722330 −0.00361165 0.999993i \(-0.501150\pi\)
−0.00361165 + 0.999993i \(0.501150\pi\)
\(822\) 0 0
\(823\) 365.439i 0.444033i 0.975043 + 0.222016i \(0.0712638\pi\)
−0.975043 + 0.222016i \(0.928736\pi\)
\(824\) −749.093 + 38.9144i −0.909093 + 0.0472262i
\(825\) 0 0
\(826\) 4.95558 + 286.410i 0.00599949 + 0.346743i
\(827\) 1236.80i 1.49552i 0.663968 + 0.747761i \(0.268871\pi\)
−0.663968 + 0.747761i \(0.731129\pi\)
\(828\) 0 0
\(829\) 899.957 1.08559 0.542797 0.839864i \(-0.317365\pi\)
0.542797 + 0.839864i \(0.317365\pi\)
\(830\) −622.183 + 10.7653i −0.749618 + 0.0129702i
\(831\) 0 0
\(832\) −899.377 + 93.6958i −1.08098 + 0.112615i
\(833\) −143.281 −0.172006
\(834\) 0 0
\(835\) 406.799i 0.487184i
\(836\) −423.709 + 14.6668i −0.506829 + 0.0175440i
\(837\) 0 0
\(838\) −625.161 + 10.8168i −0.746016 + 0.0129079i
\(839\) 473.095i 0.563880i 0.959432 + 0.281940i \(0.0909779\pi\)
−0.959432 + 0.281940i \(0.909022\pi\)
\(840\) 0 0
\(841\) 2150.91 2.55756
\(842\) −21.9108 1266.35i −0.0260224 1.50397i
\(843\) 0 0
\(844\) −0.0971973 2.80794i −0.000115163 0.00332694i
\(845\) 192.685 0.228029
\(846\) 0 0
\(847\) 407.195i 0.480750i
\(848\) 346.550 24.0205i 0.408667 0.0283261i
\(849\) 0 0
\(850\) −10.3326 597.177i −0.0121560 0.702562i
\(851\) 779.849i 0.916391i
\(852\) 0 0
\(853\) −456.925 −0.535668 −0.267834 0.963465i \(-0.586308\pi\)
−0.267834 + 0.963465i \(0.586308\pi\)
\(854\) −188.978 + 3.26977i −0.221286 + 0.00382877i
\(855\) 0 0
\(856\) 385.151 20.0081i 0.449943 0.0233739i
\(857\) 1460.48 1.70417 0.852087 0.523401i \(-0.175337\pi\)
0.852087 + 0.523401i \(0.175337\pi\)
\(858\) 0 0
\(859\) 329.072i 0.383087i 0.981484 + 0.191544i \(0.0613493\pi\)
−0.981484 + 0.191544i \(0.938651\pi\)
\(860\) −3.33678 96.3964i −0.00387998 0.112089i
\(861\) 0 0
\(862\) −93.5562 + 1.61875i −0.108534 + 0.00187790i
\(863\) 528.421i 0.612307i 0.951982 + 0.306154i \(0.0990421\pi\)
−0.951982 + 0.306154i \(0.900958\pi\)
\(864\) 0 0
\(865\) −1492.13 −1.72501
\(866\) −2.47119 142.823i −0.00285357 0.164923i
\(867\) 0 0
\(868\) −155.791 + 5.39272i −0.179482 + 0.00621281i
\(869\) 259.164 0.298232
\(870\) 0 0
\(871\) 1348.25i 1.54793i
\(872\) 37.0950 + 714.069i 0.0425401 + 0.818887i
\(873\) 0 0
\(874\) −6.43516 371.923i −0.00736289 0.425541i
\(875\) 173.301i 0.198058i
\(876\) 0 0
\(877\) 532.559 0.607250 0.303625 0.952792i \(-0.401803\pi\)
0.303625 + 0.952792i \(0.401803\pi\)
\(878\) −1.65964 + 0.0287157i −0.00189025 + 3.27058e-5i
\(879\) 0 0
\(880\) −115.420 1665.18i −0.131159 1.89225i
\(881\) 326.517 0.370621 0.185310 0.982680i \(-0.440671\pi\)
0.185310 + 0.982680i \(0.440671\pi\)
\(882\) 0 0
\(883\) 31.0138i 0.0351232i −0.999846 0.0175616i \(-0.994410\pi\)
0.999846 0.0175616i \(-0.00559032\pi\)
\(884\) −1156.10 + 40.0187i −1.30781 + 0.0452700i
\(885\) 0 0
\(886\) −1539.90 + 26.6440i −1.73804 + 0.0300722i
\(887\) 414.448i 0.467247i −0.972327 0.233623i \(-0.924942\pi\)
0.972327 0.233623i \(-0.0750583\pi\)
\(888\) 0 0
\(889\) −551.111 −0.619923
\(890\) 8.54547 + 493.889i 0.00960165 + 0.554931i
\(891\) 0 0
\(892\) −36.0534 1041.55i −0.0404186 1.16765i
\(893\) −175.600 −0.196640
\(894\) 0 0
\(895\) 649.044i 0.725189i
\(896\) −336.176 + 40.9127i −0.375196 + 0.0456615i
\(897\) 0 0
\(898\) −2.77127 160.167i −0.00308605 0.178360i
\(899\) 805.688i 0.896204i
\(900\) 0 0
\(901\) 444.402 0.493232
\(902\) −1113.37 + 19.2640i −1.23434 + 0.0213570i
\(903\) 0 0
\(904\) −38.7915 746.726i −0.0429109 0.826025i
\(905\) 274.145 0.302923
\(906\) 0 0
\(907\) 388.080i 0.427872i −0.976848 0.213936i \(-0.931372\pi\)
0.976848 0.213936i \(-0.0686283\pi\)
\(908\) 30.7401 + 888.052i 0.0338547 + 0.978031i
\(909\) 0 0
\(910\) 470.339 8.13801i 0.516857 0.00894286i
\(911\) 891.807i 0.978932i −0.872023 0.489466i \(-0.837192\pi\)
0.872023 0.489466i \(-0.162808\pi\)
\(912\) 0 0
\(913\) −819.886 −0.898013
\(914\) 6.19031 + 357.771i 0.00677277 + 0.391435i
\(915\) 0 0
\(916\) −498.824 + 17.2669i −0.544567 + 0.0188503i
\(917\) 179.301 0.195530
\(918\) 0 0
\(919\) 390.619i 0.425048i −0.977156 0.212524i \(-0.931832\pi\)
0.977156 0.212524i \(-0.0681684\pi\)
\(920\) 1462.54 75.9771i 1.58972 0.0825838i
\(921\) 0 0
\(922\) −11.1018 641.632i −0.0120410 0.695913i
\(923\) 786.304i 0.851900i
\(924\) 0 0
\(925\) 391.064 0.422771
\(926\) 1195.12 20.6785i 1.29063 0.0223310i
\(927\) 0 0
\(928\) 151.222 + 1743.80i 0.162955 + 1.87910i
\(929\) 241.450 0.259903 0.129952 0.991520i \(-0.458518\pi\)
0.129952 + 0.991520i \(0.458518\pi\)
\(930\) 0 0
\(931\) 44.7481i 0.0480645i
\(932\) 1328.49 45.9859i 1.42542 0.0493410i
\(933\) 0 0
\(934\) −1156.44 + 20.0092i −1.23816 + 0.0214231i
\(935\) 2135.37i 2.28382i
\(936\) 0 0
\(937\) −753.075 −0.803709 −0.401855 0.915703i \(-0.631634\pi\)
−0.401855 + 0.915703i \(0.631634\pi\)
\(938\) 8.73545 + 504.869i 0.00931285 + 0.538240i
\(939\) 0 0
\(940\) −23.9169 690.937i −0.0254435 0.735040i
\(941\) −1372.35 −1.45840 −0.729199 0.684302i \(-0.760107\pi\)
−0.729199 + 0.684302i \(0.760107\pi\)
\(942\) 0 0
\(943\) 977.000i 1.03606i
\(944\) 59.8922 + 864.077i 0.0634451 + 0.915336i
\(945\) 0 0
\(946\) −2.19853 127.065i −0.00232403 0.134318i
\(947\) 498.081i 0.525957i −0.964802 0.262979i \(-0.915295\pi\)
0.964802 0.262979i \(-0.0847048\pi\)
\(948\) 0 0
\(949\) 1843.48 1.94255
\(950\) 186.505 3.22698i 0.196321 0.00339682i
\(951\) 0 0
\(952\) −432.657 + 22.4760i −0.454472 + 0.0236092i
\(953\) 117.526 0.123322 0.0616610 0.998097i \(-0.480360\pi\)
0.0616610 + 0.998097i \(0.480360\pi\)
\(954\) 0 0
\(955\) 1379.90i 1.44493i
\(956\) −39.4494 1139.66i −0.0412651 1.19211i
\(957\) 0 0
\(958\) 1087.68 18.8195i 1.13537 0.0196446i
\(959\) 35.4867i 0.0370038i
\(960\) 0 0
\(961\) 744.037 0.774233
\(962\) −13.1032 757.304i −0.0136208 0.787218i
\(963\) 0 0
\(964\) −356.719 + 12.3479i −0.370041 + 0.0128090i
\(965\) 59.1623 0.0613081
\(966\) 0 0
\(967\) 1016.54i 1.05123i −0.850723 0.525614i \(-0.823836\pi\)
0.850723 0.525614i \(-0.176164\pi\)
\(968\) −63.8753 1229.58i −0.0659869 1.27023i
\(969\) 0 0
\(970\) 37.4324 + 2163.42i 0.0385901 + 2.23033i
\(971\) 760.606i 0.783323i −0.920109 0.391661i \(-0.871900\pi\)
0.920109 0.391661i \(-0.128100\pi\)
\(972\) 0 0
\(973\) −424.332 −0.436107
\(974\) 50.3239 0.870724i 0.0516672 0.000893967i
\(975\) 0 0
\(976\) −570.133 + 39.5179i −0.584153 + 0.0404896i
\(977\) 1823.13 1.86605 0.933026 0.359809i \(-0.117158\pi\)
0.933026 + 0.359809i \(0.117158\pi\)
\(978\) 0 0
\(979\) 650.825i 0.664786i
\(980\) 176.072 6.09475i 0.179665 0.00621914i
\(981\) 0 0
\(982\) 1751.77 30.3098i 1.78388 0.0308654i
\(983\) 1400.51i 1.42473i 0.701809 + 0.712365i \(0.252376\pi\)
−0.701809 + 0.712365i \(0.747624\pi\)
\(984\) 0 0
\(985\) −2071.29 −2.10284
\(986\) 38.7379 + 2238.87i 0.0392879 + 2.27066i
\(987\) 0 0
\(988\) −12.4982 361.062i −0.0126500 0.365448i
\(989\) 111.502 0.112742
\(990\) 0 0
\(991\) 508.288i 0.512904i 0.966557 + 0.256452i \(0.0825536\pi\)
−0.966557 + 0.256452i \(0.917446\pi\)
\(992\) −469.586 + 40.7225i −0.473373 + 0.0410509i
\(993\) 0 0
\(994\) 5.09454 + 294.441i 0.00512529 + 0.296218i
\(995\) 396.430i 0.398422i
\(996\) 0 0
\(997\) 1357.91 1.36199 0.680997 0.732286i \(-0.261547\pi\)
0.680997 + 0.732286i \(0.261547\pi\)
\(998\) −18.1326 + 0.313738i −0.0181690 + 0.000314367i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.3.g.b.127.7 12
3.2 odd 2 84.3.g.a.43.6 yes 12
4.3 odd 2 inner 252.3.g.b.127.8 12
12.11 even 2 84.3.g.a.43.5 12
21.20 even 2 588.3.g.d.295.6 12
24.5 odd 2 1344.3.m.e.127.5 12
24.11 even 2 1344.3.m.e.127.11 12
84.83 odd 2 588.3.g.d.295.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.5 12 12.11 even 2
84.3.g.a.43.6 yes 12 3.2 odd 2
252.3.g.b.127.7 12 1.1 even 1 trivial
252.3.g.b.127.8 12 4.3 odd 2 inner
588.3.g.d.295.5 12 84.83 odd 2
588.3.g.d.295.6 12 21.20 even 2
1344.3.m.e.127.5 12 24.5 odd 2
1344.3.m.e.127.11 12 24.11 even 2