Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [252,3,Mod(127,252)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(252, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("252.127");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 252.g (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 12.0.489494783471841.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 84) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
127.1 |
|
−1.98491 | − | 0.245189i | 0 | 3.87976 | + | 0.973359i | −0.424396 | 0 | − | 2.64575i | −7.46234 | − | 2.88331i | 0 | 0.842389 | + | 0.104057i | |||||||||||||||||||||||||||||||||||||||||||||
127.2 | −1.98491 | + | 0.245189i | 0 | 3.87976 | − | 0.973359i | −0.424396 | 0 | 2.64575i | −7.46234 | + | 2.88331i | 0 | 0.842389 | − | 0.104057i | |||||||||||||||||||||||||||||||||||||||||||||||
127.3 | −1.42562 | − | 1.40272i | 0 | 0.0647610 | + | 3.99948i | −1.94731 | 0 | − | 2.64575i | 5.51781 | − | 5.79256i | 0 | 2.77611 | + | 2.73152i | ||||||||||||||||||||||||||||||||||||||||||||||
127.4 | −1.42562 | + | 1.40272i | 0 | 0.0647610 | − | 3.99948i | −1.94731 | 0 | 2.64575i | 5.51781 | + | 5.79256i | 0 | 2.77611 | − | 2.73152i | |||||||||||||||||||||||||||||||||||||||||||||||
127.5 | −0.913644 | − | 1.77912i | 0 | −2.33051 | + | 3.25096i | −8.22808 | 0 | 2.64575i | 7.91309 | + | 1.17604i | 0 | 7.51753 | + | 14.6387i | |||||||||||||||||||||||||||||||||||||||||||||||
127.6 | −0.913644 | + | 1.77912i | 0 | −2.33051 | − | 3.25096i | −8.22808 | 0 | − | 2.64575i | 7.91309 | − | 1.17604i | 0 | 7.51753 | − | 14.6387i | ||||||||||||||||||||||||||||||||||||||||||||||
127.7 | −0.0345996 | − | 1.99970i | 0 | −3.99761 | + | 0.138378i | 6.29204 | 0 | 2.64575i | 0.415030 | + | 7.98923i | 0 | −0.217702 | − | 12.5822i | |||||||||||||||||||||||||||||||||||||||||||||||
127.8 | −0.0345996 | + | 1.99970i | 0 | −3.99761 | − | 0.138378i | 6.29204 | 0 | − | 2.64575i | 0.415030 | − | 7.98923i | 0 | −0.217702 | + | 12.5822i | ||||||||||||||||||||||||||||||||||||||||||||||
127.9 | 1.51951 | − | 1.30042i | 0 | 0.617841 | − | 3.95200i | −7.86764 | 0 | 2.64575i | −4.20042 | − | 6.80856i | 0 | −11.9550 | + | 10.2312i | |||||||||||||||||||||||||||||||||||||||||||||||
127.10 | 1.51951 | + | 1.30042i | 0 | 0.617841 | + | 3.95200i | −7.86764 | 0 | − | 2.64575i | −4.20042 | + | 6.80856i | 0 | −11.9550 | − | 10.2312i | ||||||||||||||||||||||||||||||||||||||||||||||
127.11 | 1.83926 | − | 0.785573i | 0 | 2.76575 | − | 2.88975i | 8.17539 | 0 | − | 2.64575i | 2.81683 | − | 7.48769i | 0 | 15.0367 | − | 6.42236i | ||||||||||||||||||||||||||||||||||||||||||||||
127.12 | 1.83926 | + | 0.785573i | 0 | 2.76575 | + | 2.88975i | 8.17539 | 0 | 2.64575i | 2.81683 | + | 7.48769i | 0 | 15.0367 | + | 6.42236i | |||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 252.3.g.b | 12 | |
3.b | odd | 2 | 1 | 84.3.g.a | ✓ | 12 | |
4.b | odd | 2 | 1 | inner | 252.3.g.b | 12 | |
12.b | even | 2 | 1 | 84.3.g.a | ✓ | 12 | |
21.c | even | 2 | 1 | 588.3.g.d | 12 | ||
24.f | even | 2 | 1 | 1344.3.m.e | 12 | ||
24.h | odd | 2 | 1 | 1344.3.m.e | 12 | ||
84.h | odd | 2 | 1 | 588.3.g.d | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
84.3.g.a | ✓ | 12 | 3.b | odd | 2 | 1 | |
84.3.g.a | ✓ | 12 | 12.b | even | 2 | 1 | |
252.3.g.b | 12 | 1.a | even | 1 | 1 | trivial | |
252.3.g.b | 12 | 4.b | odd | 2 | 1 | inner | |
588.3.g.d | 12 | 21.c | even | 2 | 1 | ||
588.3.g.d | 12 | 84.h | odd | 2 | 1 | ||
1344.3.m.e | 12 | 24.f | even | 2 | 1 | ||
1344.3.m.e | 12 | 24.h | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .