Properties

Label 84.3.g.a.43.5
Level $84$
Weight $3$
Character 84.43
Analytic conductor $2.289$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [84,3,Mod(43,84)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(84, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("84.43");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 84 = 2^{2} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 84.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.28883422063\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.489494783471841.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 7 x^{10} - 11 x^{9} + 18 x^{8} - 22 x^{7} + 33 x^{6} - 44 x^{5} + 72 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 43.5
Root \(1.10978 - 0.876576i\) of defining polynomial
Character \(\chi\) \(=\) 84.43
Dual form 84.3.g.a.43.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0345996 - 1.99970i) q^{2} -1.73205i q^{3} +(-3.99761 - 0.138378i) q^{4} -6.29204 q^{5} +(-3.46358 - 0.0599283i) q^{6} -2.64575i q^{7} +(-0.415030 + 7.98923i) q^{8} -3.00000 q^{9} +O(q^{10})\) \(q+(0.0345996 - 1.99970i) q^{2} -1.73205i q^{3} +(-3.99761 - 0.138378i) q^{4} -6.29204 q^{5} +(-3.46358 - 0.0599283i) q^{6} -2.64575i q^{7} +(-0.415030 + 7.98923i) q^{8} -3.00000 q^{9} +(-0.217702 + 12.5822i) q^{10} -16.5803i q^{11} +(-0.239677 + 6.92406i) q^{12} +14.1288 q^{13} +(-5.29071 - 0.0915421i) q^{14} +10.8981i q^{15} +(15.9617 + 1.10636i) q^{16} -20.4687 q^{17} +(-0.103799 + 5.99910i) q^{18} -6.39258i q^{19} +(25.1531 + 0.870679i) q^{20} -4.58258 q^{21} +(-33.1556 - 0.573671i) q^{22} -29.0945i q^{23} +(13.8377 + 0.718853i) q^{24} +14.5898 q^{25} +(0.488852 - 28.2534i) q^{26} +5.19615i q^{27} +(-0.366113 + 10.5767i) q^{28} +54.6984 q^{29} +(21.7930 + 0.377071i) q^{30} +14.7296i q^{31} +(2.76466 - 31.8803i) q^{32} -28.7179 q^{33} +(-0.708210 + 40.9313i) q^{34} +16.6472i q^{35} +(11.9928 + 0.415134i) q^{36} +26.8040 q^{37} +(-12.7833 - 0.221181i) q^{38} -24.4718i q^{39} +(2.61139 - 50.2685i) q^{40} -33.5802 q^{41} +(-0.158555 + 9.16378i) q^{42} -3.83239i q^{43} +(-2.29434 + 66.2814i) q^{44} +18.8761 q^{45} +(-58.1804 - 1.00666i) q^{46} +27.4693i q^{47} +(1.91627 - 27.6465i) q^{48} -7.00000 q^{49} +(0.504801 - 29.1752i) q^{50} +35.4528i q^{51} +(-56.4815 - 1.95512i) q^{52} -21.7113 q^{53} +(10.3907 + 0.179785i) q^{54} +104.324i q^{55} +(21.1375 + 1.09807i) q^{56} -11.0723 q^{57} +(1.89254 - 109.380i) q^{58} +54.1344i q^{59} +(1.50806 - 43.5664i) q^{60} -35.7188 q^{61} +(29.4549 + 0.509641i) q^{62} +7.93725i q^{63} +(-63.6555 - 6.63154i) q^{64} -88.8991 q^{65} +(-0.993628 + 57.4271i) q^{66} -95.4255i q^{67} +(81.8258 + 2.83241i) q^{68} -50.3932 q^{69} +(33.2894 + 0.575986i) q^{70} +55.6524i q^{71} +(1.24509 - 23.9677i) q^{72} +130.476 q^{73} +(0.927408 - 53.5999i) q^{74} -25.2702i q^{75} +(-0.884592 + 25.5550i) q^{76} -43.8673 q^{77} +(-48.9363 - 0.846717i) q^{78} -15.6309i q^{79} +(-100.432 - 6.96126i) q^{80} +9.00000 q^{81} +(-1.16186 + 67.1503i) q^{82} -49.4495i q^{83} +(18.3193 + 0.634127i) q^{84} +128.790 q^{85} +(-7.66363 - 0.132599i) q^{86} -94.7403i q^{87} +(132.464 + 6.88131i) q^{88} +39.2530 q^{89} +(0.653107 - 37.7466i) q^{90} -37.3813i q^{91} +(-4.02604 + 116.309i) q^{92} +25.5125 q^{93} +(54.9303 + 0.950427i) q^{94} +40.2224i q^{95} +(-55.2184 - 4.78853i) q^{96} -171.943 q^{97} +(-0.242198 + 13.9979i) q^{98} +49.7408i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{2} + 2 q^{4} + 8 q^{5} - 12 q^{6} - 10 q^{8} - 36 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 2 q^{2} + 2 q^{4} + 8 q^{5} - 12 q^{6} - 10 q^{8} - 36 q^{9} + 28 q^{10} + 24 q^{12} - 24 q^{13} - 14 q^{14} - 14 q^{16} - 40 q^{17} - 6 q^{18} - 20 q^{20} - 88 q^{22} - 36 q^{24} + 180 q^{25} + 100 q^{26} + 14 q^{28} + 72 q^{29} + 72 q^{30} + 142 q^{32} - 100 q^{34} - 6 q^{36} - 88 q^{37} + 128 q^{38} - 28 q^{40} - 200 q^{41} - 40 q^{44} - 24 q^{45} - 24 q^{46} + 48 q^{48} - 84 q^{49} - 346 q^{50} - 364 q^{52} + 104 q^{53} + 36 q^{54} + 98 q^{56} + 148 q^{58} + 96 q^{60} + 104 q^{61} + 64 q^{62} - 70 q^{64} + 176 q^{65} + 24 q^{66} + 188 q^{68} - 192 q^{69} - 84 q^{70} + 30 q^{72} + 312 q^{73} + 4 q^{74} + 432 q^{76} - 224 q^{77} + 48 q^{78} - 564 q^{80} + 108 q^{81} + 332 q^{82} + 352 q^{85} + 160 q^{86} + 328 q^{88} - 552 q^{89} - 84 q^{90} + 232 q^{92} - 48 q^{93} - 144 q^{94} - 108 q^{96} - 264 q^{97} - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/84\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(43\) \(73\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0345996 1.99970i 0.0172998 0.999850i
\(3\) 1.73205i 0.577350i
\(4\) −3.99761 0.138378i −0.999401 0.0345945i
\(5\) −6.29204 −1.25841 −0.629204 0.777240i \(-0.716619\pi\)
−0.629204 + 0.777240i \(0.716619\pi\)
\(6\) −3.46358 0.0599283i −0.577264 0.00998806i
\(7\) 2.64575i 0.377964i
\(8\) −0.415030 + 7.98923i −0.0518788 + 0.998653i
\(9\) −3.00000 −0.333333
\(10\) −0.217702 + 12.5822i −0.0217702 + 1.25822i
\(11\) 16.5803i 1.50730i −0.657278 0.753649i \(-0.728292\pi\)
0.657278 0.753649i \(-0.271708\pi\)
\(12\) −0.239677 + 6.92406i −0.0199731 + 0.577005i
\(13\) 14.1288 1.08683 0.543416 0.839463i \(-0.317131\pi\)
0.543416 + 0.839463i \(0.317131\pi\)
\(14\) −5.29071 0.0915421i −0.377908 0.00653872i
\(15\) 10.8981i 0.726542i
\(16\) 15.9617 + 1.10636i 0.997606 + 0.0691475i
\(17\) −20.4687 −1.20404 −0.602020 0.798481i \(-0.705637\pi\)
−0.602020 + 0.798481i \(0.705637\pi\)
\(18\) −0.103799 + 5.99910i −0.00576661 + 0.333283i
\(19\) 6.39258i 0.336452i −0.985748 0.168226i \(-0.946196\pi\)
0.985748 0.168226i \(-0.0538038\pi\)
\(20\) 25.1531 + 0.870679i 1.25765 + 0.0435340i
\(21\) −4.58258 −0.218218
\(22\) −33.1556 0.573671i −1.50707 0.0260760i
\(23\) 29.0945i 1.26498i −0.774568 0.632490i \(-0.782033\pi\)
0.774568 0.632490i \(-0.217967\pi\)
\(24\) 13.8377 + 0.718853i 0.576573 + 0.0299522i
\(25\) 14.5898 0.583591
\(26\) 0.488852 28.2534i 0.0188020 1.08667i
\(27\) 5.19615i 0.192450i
\(28\) −0.366113 + 10.5767i −0.0130755 + 0.377738i
\(29\) 54.6984 1.88615 0.943075 0.332579i \(-0.107919\pi\)
0.943075 + 0.332579i \(0.107919\pi\)
\(30\) 21.7930 + 0.377071i 0.726433 + 0.0125690i
\(31\) 14.7296i 0.475150i 0.971369 + 0.237575i \(0.0763525\pi\)
−0.971369 + 0.237575i \(0.923647\pi\)
\(32\) 2.76466 31.8803i 0.0863956 0.996261i
\(33\) −28.7179 −0.870238
\(34\) −0.708210 + 40.9313i −0.0208297 + 1.20386i
\(35\) 16.6472i 0.475633i
\(36\) 11.9928 + 0.415134i 0.333134 + 0.0115315i
\(37\) 26.8040 0.724431 0.362216 0.932094i \(-0.382020\pi\)
0.362216 + 0.932094i \(0.382020\pi\)
\(38\) −12.7833 0.221181i −0.336401 0.00582055i
\(39\) 24.4718i 0.627483i
\(40\) 2.61139 50.2685i 0.0652846 1.25671i
\(41\) −33.5802 −0.819029 −0.409515 0.912304i \(-0.634302\pi\)
−0.409515 + 0.912304i \(0.634302\pi\)
\(42\) −0.158555 + 9.16378i −0.00377513 + 0.218185i
\(43\) 3.83239i 0.0891253i −0.999007 0.0445627i \(-0.985811\pi\)
0.999007 0.0445627i \(-0.0141894\pi\)
\(44\) −2.29434 + 66.2814i −0.0521441 + 1.50639i
\(45\) 18.8761 0.419469
\(46\) −58.1804 1.00666i −1.26479 0.0218839i
\(47\) 27.4693i 0.584453i 0.956349 + 0.292226i \(0.0943961\pi\)
−0.956349 + 0.292226i \(0.905604\pi\)
\(48\) 1.91627 27.6465i 0.0399223 0.575968i
\(49\) −7.00000 −0.142857
\(50\) 0.504801 29.1752i 0.0100960 0.583503i
\(51\) 35.4528i 0.695153i
\(52\) −56.4815 1.95512i −1.08618 0.0375984i
\(53\) −21.7113 −0.409648 −0.204824 0.978799i \(-0.565662\pi\)
−0.204824 + 0.978799i \(0.565662\pi\)
\(54\) 10.3907 + 0.179785i 0.192421 + 0.00332935i
\(55\) 104.324i 1.89679i
\(56\) 21.1375 + 1.09807i 0.377456 + 0.0196083i
\(57\) −11.0723 −0.194250
\(58\) 1.89254 109.380i 0.0326301 1.88587i
\(59\) 54.1344i 0.917532i 0.888557 + 0.458766i \(0.151708\pi\)
−0.888557 + 0.458766i \(0.848292\pi\)
\(60\) 1.50806 43.5664i 0.0251343 0.726107i
\(61\) −35.7188 −0.585554 −0.292777 0.956181i \(-0.594579\pi\)
−0.292777 + 0.956181i \(0.594579\pi\)
\(62\) 29.4549 + 0.509641i 0.475079 + 0.00822001i
\(63\) 7.93725i 0.125988i
\(64\) −63.6555 6.63154i −0.994617 0.103618i
\(65\) −88.8991 −1.36768
\(66\) −0.993628 + 57.4271i −0.0150550 + 0.870108i
\(67\) 95.4255i 1.42426i −0.702047 0.712131i \(-0.747730\pi\)
0.702047 0.712131i \(-0.252270\pi\)
\(68\) 81.8258 + 2.83241i 1.20332 + 0.0416532i
\(69\) −50.3932 −0.730337
\(70\) 33.2894 + 0.575986i 0.475562 + 0.00822837i
\(71\) 55.6524i 0.783837i 0.920000 + 0.391919i \(0.128189\pi\)
−0.920000 + 0.391919i \(0.871811\pi\)
\(72\) 1.24509 23.9677i 0.0172929 0.332884i
\(73\) 130.476 1.78735 0.893673 0.448719i \(-0.148119\pi\)
0.893673 + 0.448719i \(0.148119\pi\)
\(74\) 0.927408 53.5999i 0.0125325 0.724323i
\(75\) 25.2702i 0.336936i
\(76\) −0.884592 + 25.5550i −0.0116394 + 0.336250i
\(77\) −43.8673 −0.569705
\(78\) −48.9363 0.846717i −0.627389 0.0108553i
\(79\) 15.6309i 0.197859i −0.995094 0.0989295i \(-0.968458\pi\)
0.995094 0.0989295i \(-0.0315418\pi\)
\(80\) −100.432 6.96126i −1.25540 0.0870158i
\(81\) 9.00000 0.111111
\(82\) −1.16186 + 67.1503i −0.0141691 + 0.818907i
\(83\) 49.4495i 0.595777i −0.954601 0.297889i \(-0.903718\pi\)
0.954601 0.297889i \(-0.0962824\pi\)
\(84\) 18.3193 + 0.634127i 0.218087 + 0.00754913i
\(85\) 128.790 1.51517
\(86\) −7.66363 0.132599i −0.0891120 0.00154185i
\(87\) 94.7403i 1.08897i
\(88\) 132.464 + 6.88131i 1.50527 + 0.0781967i
\(89\) 39.2530 0.441045 0.220522 0.975382i \(-0.429224\pi\)
0.220522 + 0.975382i \(0.429224\pi\)
\(90\) 0.653107 37.7466i 0.00725674 0.419407i
\(91\) 37.3813i 0.410784i
\(92\) −4.02604 + 116.309i −0.0437613 + 1.26422i
\(93\) 25.5125 0.274328
\(94\) 54.9303 + 0.950427i 0.584365 + 0.0101109i
\(95\) 40.2224i 0.423394i
\(96\) −55.2184 4.78853i −0.575192 0.0498805i
\(97\) −171.943 −1.77261 −0.886303 0.463106i \(-0.846735\pi\)
−0.886303 + 0.463106i \(0.846735\pi\)
\(98\) −0.242198 + 13.9979i −0.00247140 + 0.142836i
\(99\) 49.7408i 0.502432i
\(100\) −58.3241 2.01890i −0.583241 0.0201890i
\(101\) 113.883 1.12755 0.563777 0.825927i \(-0.309348\pi\)
0.563777 + 0.825927i \(0.309348\pi\)
\(102\) 70.8950 + 1.22665i 0.695049 + 0.0120260i
\(103\) 93.7629i 0.910319i −0.890410 0.455160i \(-0.849582\pi\)
0.890410 0.455160i \(-0.150418\pi\)
\(104\) −5.86389 + 112.878i −0.0563835 + 1.08537i
\(105\) 28.8337 0.274607
\(106\) −0.751204 + 43.4161i −0.00708683 + 0.409586i
\(107\) 48.2088i 0.450549i −0.974295 0.225275i \(-0.927672\pi\)
0.974295 0.225275i \(-0.0723279\pi\)
\(108\) 0.719032 20.7722i 0.00665771 0.192335i
\(109\) 89.3790 0.819991 0.409996 0.912088i \(-0.365530\pi\)
0.409996 + 0.912088i \(0.365530\pi\)
\(110\) 208.616 + 3.60956i 1.89651 + 0.0328142i
\(111\) 46.4258i 0.418251i
\(112\) 2.92715 42.2307i 0.0261353 0.377060i
\(113\) 93.4667 0.827139 0.413569 0.910473i \(-0.364282\pi\)
0.413569 + 0.910473i \(0.364282\pi\)
\(114\) −0.383097 + 22.1412i −0.00336050 + 0.194221i
\(115\) 183.064i 1.59186i
\(116\) −218.662 7.56904i −1.88502 0.0652504i
\(117\) −42.3865 −0.362277
\(118\) 108.253 + 1.87303i 0.917395 + 0.0158731i
\(119\) 54.1551i 0.455085i
\(120\) −87.0677 4.52305i −0.725564 0.0376921i
\(121\) −153.905 −1.27194
\(122\) −1.23586 + 71.4269i −0.0101300 + 0.585466i
\(123\) 58.1626i 0.472867i
\(124\) 2.03826 58.8833i 0.0164376 0.474866i
\(125\) 65.5016 0.524013
\(126\) 15.8721 + 0.274626i 0.125969 + 0.00217957i
\(127\) 208.300i 1.64016i −0.572248 0.820081i \(-0.693929\pi\)
0.572248 0.820081i \(-0.306071\pi\)
\(128\) −15.4635 + 127.062i −0.120809 + 0.992676i
\(129\) −6.63789 −0.0514565
\(130\) −3.07588 + 177.772i −0.0236606 + 1.36747i
\(131\) 67.7695i 0.517324i −0.965968 0.258662i \(-0.916718\pi\)
0.965968 0.258662i \(-0.0832816\pi\)
\(132\) 114.803 + 3.97392i 0.869718 + 0.0301054i
\(133\) −16.9132 −0.127167
\(134\) −190.823 3.30169i −1.42405 0.0246395i
\(135\) 32.6944i 0.242181i
\(136\) 8.49512 163.529i 0.0624641 1.20242i
\(137\) −13.4127 −0.0979029 −0.0489514 0.998801i \(-0.515588\pi\)
−0.0489514 + 0.998801i \(0.515588\pi\)
\(138\) −1.74359 + 100.771i −0.0126347 + 0.730227i
\(139\) 160.382i 1.15383i −0.816804 0.576915i \(-0.804256\pi\)
0.816804 0.576915i \(-0.195744\pi\)
\(140\) 2.30360 66.5488i 0.0164543 0.475349i
\(141\) 47.5782 0.337434
\(142\) 111.288 + 1.92555i 0.783720 + 0.0135602i
\(143\) 234.260i 1.63818i
\(144\) −47.8851 3.31908i −0.332535 0.0230492i
\(145\) −344.164 −2.37355
\(146\) 4.51443 260.914i 0.0309208 1.78708i
\(147\) 12.1244i 0.0824786i
\(148\) −107.152 3.70908i −0.723998 0.0250613i
\(149\) −130.824 −0.878015 −0.439007 0.898483i \(-0.644670\pi\)
−0.439007 + 0.898483i \(0.644670\pi\)
\(150\) −50.5329 0.874340i −0.336886 0.00582894i
\(151\) 175.855i 1.16460i 0.812974 + 0.582300i \(0.197847\pi\)
−0.812974 + 0.582300i \(0.802153\pi\)
\(152\) 51.0718 + 2.65311i 0.335999 + 0.0174547i
\(153\) 61.4061 0.401347
\(154\) −1.51779 + 87.7214i −0.00985579 + 0.569620i
\(155\) 92.6795i 0.597932i
\(156\) −3.38636 + 97.8288i −0.0217074 + 0.627107i
\(157\) −167.199 −1.06496 −0.532482 0.846441i \(-0.678741\pi\)
−0.532482 + 0.846441i \(0.678741\pi\)
\(158\) −31.2570 0.540822i −0.197829 0.00342293i
\(159\) 37.6051i 0.236510i
\(160\) −17.3953 + 200.592i −0.108721 + 1.25370i
\(161\) −76.9769 −0.478118
\(162\) 0.311397 17.9973i 0.00192220 0.111094i
\(163\) 220.591i 1.35332i 0.736295 + 0.676661i \(0.236574\pi\)
−0.736295 + 0.676661i \(0.763426\pi\)
\(164\) 134.240 + 4.64676i 0.818539 + 0.0283339i
\(165\) 180.694 1.09511
\(166\) −98.8842 1.71093i −0.595688 0.0103068i
\(167\) 64.6529i 0.387143i 0.981086 + 0.193572i \(0.0620072\pi\)
−0.981086 + 0.193572i \(0.937993\pi\)
\(168\) 1.90191 36.6112i 0.0113209 0.217924i
\(169\) 30.6236 0.181205
\(170\) 4.45608 257.541i 0.0262123 1.51495i
\(171\) 19.1777i 0.112151i
\(172\) −0.530318 + 15.3204i −0.00308324 + 0.0890720i
\(173\) 237.146 1.37078 0.685392 0.728174i \(-0.259631\pi\)
0.685392 + 0.728174i \(0.259631\pi\)
\(174\) −189.452 3.27798i −1.08881 0.0188390i
\(175\) 38.6009i 0.220577i
\(176\) 18.3438 264.649i 0.104226 1.50369i
\(177\) 93.7636 0.529738
\(178\) 1.35814 78.4942i 0.00763000 0.440979i
\(179\) 103.153i 0.576275i 0.957589 + 0.288137i \(0.0930360\pi\)
−0.957589 + 0.288137i \(0.906964\pi\)
\(180\) −75.4593 2.61204i −0.419218 0.0145113i
\(181\) 43.5702 0.240719 0.120360 0.992730i \(-0.461595\pi\)
0.120360 + 0.992730i \(0.461595\pi\)
\(182\) −74.7515 1.29338i −0.410723 0.00710649i
\(183\) 61.8668i 0.338070i
\(184\) 232.443 + 12.0751i 1.26328 + 0.0656256i
\(185\) −168.652 −0.911630
\(186\) 0.882723 51.0174i 0.00474582 0.274287i
\(187\) 339.376i 1.81485i
\(188\) 3.80114 109.811i 0.0202188 0.584103i
\(189\) 13.7477 0.0727393
\(190\) 80.4327 + 1.39168i 0.423330 + 0.00732463i
\(191\) 219.309i 1.14822i 0.818779 + 0.574109i \(0.194651\pi\)
−0.818779 + 0.574109i \(0.805349\pi\)
\(192\) −11.4862 + 110.255i −0.0598238 + 0.574243i
\(193\) 9.40273 0.0487188 0.0243594 0.999703i \(-0.492245\pi\)
0.0243594 + 0.999703i \(0.492245\pi\)
\(194\) −5.94916 + 343.834i −0.0306658 + 1.77234i
\(195\) 153.978i 0.789630i
\(196\) 27.9832 + 0.968645i 0.142772 + 0.00494207i
\(197\) 329.193 1.67103 0.835514 0.549469i \(-0.185170\pi\)
0.835514 + 0.549469i \(0.185170\pi\)
\(198\) 99.4667 + 1.72101i 0.502357 + 0.00869199i
\(199\) 63.0050i 0.316608i 0.987390 + 0.158304i \(0.0506026\pi\)
−0.987390 + 0.158304i \(0.949397\pi\)
\(200\) −6.05519 + 116.561i −0.0302760 + 0.582805i
\(201\) −165.282 −0.822298
\(202\) 3.94031 227.732i 0.0195065 1.12739i
\(203\) 144.718i 0.712898i
\(204\) 4.90589 141.726i 0.0240485 0.694737i
\(205\) 211.288 1.03067
\(206\) −187.498 3.24416i −0.910183 0.0157484i
\(207\) 87.2836i 0.421660i
\(208\) 225.520 + 15.6316i 1.08423 + 0.0751518i
\(209\) −105.991 −0.507133
\(210\) 0.997637 57.6589i 0.00475065 0.274566i
\(211\) 0.702405i 0.00332893i −0.999999 0.00166447i \(-0.999470\pi\)
0.999999 0.00166447i \(-0.000529817\pi\)
\(212\) 86.7933 + 3.00437i 0.409402 + 0.0141715i
\(213\) 96.3929 0.452549
\(214\) −96.4031 1.66801i −0.450482 0.00779442i
\(215\) 24.1135i 0.112156i
\(216\) −41.5132 2.15656i −0.192191 0.00998407i
\(217\) 38.9710 0.179590
\(218\) 3.09248 178.731i 0.0141857 0.819868i
\(219\) 225.992i 1.03192i
\(220\) 14.4361 417.045i 0.0656186 1.89566i
\(221\) −289.199 −1.30859
\(222\) −92.8378 1.60632i −0.418188 0.00723566i
\(223\) 260.543i 1.16835i −0.811627 0.584177i \(-0.801418\pi\)
0.811627 0.584177i \(-0.198582\pi\)
\(224\) −84.3475 7.31460i −0.376551 0.0326545i
\(225\) −43.7693 −0.194530
\(226\) 3.23391 186.905i 0.0143094 0.827015i
\(227\) 222.146i 0.978617i −0.872111 0.489308i \(-0.837249\pi\)
0.872111 0.489308i \(-0.162751\pi\)
\(228\) 44.2626 + 1.53216i 0.194134 + 0.00671999i
\(229\) 124.781 0.544893 0.272447 0.962171i \(-0.412167\pi\)
0.272447 + 0.962171i \(0.412167\pi\)
\(230\) 366.073 + 6.33395i 1.59162 + 0.0275389i
\(231\) 75.9803i 0.328919i
\(232\) −22.7015 + 436.998i −0.0978511 + 1.88361i
\(233\) 332.321 1.42627 0.713135 0.701027i \(-0.247275\pi\)
0.713135 + 0.701027i \(0.247275\pi\)
\(234\) −1.46656 + 84.7602i −0.00626734 + 0.362223i
\(235\) 172.838i 0.735480i
\(236\) 7.49100 216.408i 0.0317415 0.916983i
\(237\) −27.0734 −0.114234
\(238\) 108.294 + 1.87375i 0.455017 + 0.00787288i
\(239\) 285.085i 1.19282i 0.802679 + 0.596412i \(0.203407\pi\)
−0.802679 + 0.596412i \(0.796593\pi\)
\(240\) −12.0573 + 173.953i −0.0502386 + 0.724803i
\(241\) 89.2332 0.370262 0.185131 0.982714i \(-0.440729\pi\)
0.185131 + 0.982714i \(0.440729\pi\)
\(242\) −5.32507 + 307.765i −0.0220044 + 1.27175i
\(243\) 15.5885i 0.0641500i
\(244\) 142.790 + 4.94269i 0.585204 + 0.0202569i
\(245\) 44.0443 0.179773
\(246\) 116.308 + 2.01241i 0.472796 + 0.00818051i
\(247\) 90.3197i 0.365667i
\(248\) −117.679 6.11325i −0.474510 0.0246502i
\(249\) −85.6490 −0.343972
\(250\) 2.26633 130.984i 0.00906533 0.523935i
\(251\) 83.4611i 0.332514i 0.986082 + 0.166257i \(0.0531682\pi\)
−0.986082 + 0.166257i \(0.946832\pi\)
\(252\) 1.09834 31.7300i 0.00435849 0.125913i
\(253\) −482.395 −1.90670
\(254\) −416.539 7.20712i −1.63992 0.0283745i
\(255\) 223.071i 0.874786i
\(256\) 253.552 + 35.3188i 0.990437 + 0.137964i
\(257\) −29.8619 −0.116194 −0.0580971 0.998311i \(-0.518503\pi\)
−0.0580971 + 0.998311i \(0.518503\pi\)
\(258\) −0.229669 + 13.2738i −0.000890189 + 0.0514488i
\(259\) 70.9166i 0.273809i
\(260\) 355.384 + 12.3017i 1.36686 + 0.0473141i
\(261\) −164.095 −0.628717
\(262\) −135.519 2.34480i −0.517247 0.00894962i
\(263\) 245.304i 0.932717i 0.884596 + 0.466358i \(0.154434\pi\)
−0.884596 + 0.466358i \(0.845566\pi\)
\(264\) 11.9188 229.434i 0.0451469 0.869067i
\(265\) 136.608 0.515504
\(266\) −0.585190 + 33.8213i −0.00219996 + 0.127148i
\(267\) 67.9882i 0.254637i
\(268\) −13.2048 + 381.474i −0.0492716 + 1.42341i
\(269\) −18.9441 −0.0704241 −0.0352120 0.999380i \(-0.511211\pi\)
−0.0352120 + 0.999380i \(0.511211\pi\)
\(270\) −65.3790 1.13121i −0.242144 0.00418968i
\(271\) 278.928i 1.02925i 0.857414 + 0.514626i \(0.172069\pi\)
−0.857414 + 0.514626i \(0.827931\pi\)
\(272\) −326.715 22.6458i −1.20116 0.0832564i
\(273\) −64.7464 −0.237166
\(274\) −0.464074 + 26.8214i −0.00169370 + 0.0978882i
\(275\) 241.902i 0.879644i
\(276\) 201.452 + 6.97331i 0.729899 + 0.0252656i
\(277\) −206.348 −0.744938 −0.372469 0.928045i \(-0.621489\pi\)
−0.372469 + 0.928045i \(0.621489\pi\)
\(278\) −320.717 5.54917i −1.15366 0.0199610i
\(279\) 44.1889i 0.158383i
\(280\) −132.998 6.90908i −0.474993 0.0246753i
\(281\) −262.775 −0.935142 −0.467571 0.883956i \(-0.654871\pi\)
−0.467571 + 0.883956i \(0.654871\pi\)
\(282\) 1.64619 95.1421i 0.00583755 0.337383i
\(283\) 543.508i 1.92052i 0.279101 + 0.960262i \(0.409963\pi\)
−0.279101 + 0.960262i \(0.590037\pi\)
\(284\) 7.70107 222.477i 0.0271164 0.783368i
\(285\) 69.6672 0.244446
\(286\) −468.449 8.10530i −1.63793 0.0283402i
\(287\) 88.8448i 0.309564i
\(288\) −8.29398 + 95.6410i −0.0287985 + 0.332087i
\(289\) 129.967 0.449714
\(290\) −11.9080 + 688.226i −0.0410619 + 2.37319i
\(291\) 297.814i 1.02341i
\(292\) −521.593 18.0550i −1.78628 0.0618323i
\(293\) 19.1934 0.0655064 0.0327532 0.999463i \(-0.489572\pi\)
0.0327532 + 0.999463i \(0.489572\pi\)
\(294\) 24.2451 + 0.419498i 0.0824663 + 0.00142687i
\(295\) 340.616i 1.15463i
\(296\) −11.1245 + 214.143i −0.0375826 + 0.723456i
\(297\) 86.1536 0.290079
\(298\) −4.52647 + 261.609i −0.0151895 + 0.877883i
\(299\) 411.072i 1.37482i
\(300\) −3.49684 + 101.020i −0.0116561 + 0.336734i
\(301\) −10.1395 −0.0336862
\(302\) 351.657 + 6.08451i 1.16443 + 0.0201474i
\(303\) 197.251i 0.650994i
\(304\) 7.07250 102.037i 0.0232648 0.335646i
\(305\) 224.744 0.736866
\(306\) 2.12463 122.794i 0.00694323 0.401287i
\(307\) 543.121i 1.76912i −0.466423 0.884562i \(-0.654458\pi\)
0.466423 0.884562i \(-0.345542\pi\)
\(308\) 175.364 + 6.07026i 0.569364 + 0.0197086i
\(309\) −162.402 −0.525573
\(310\) −185.331 3.20668i −0.597843 0.0103441i
\(311\) 183.154i 0.588920i −0.955664 0.294460i \(-0.904860\pi\)
0.955664 0.294460i \(-0.0951398\pi\)
\(312\) 195.511 + 10.1565i 0.626638 + 0.0325530i
\(313\) 513.858 1.64172 0.820859 0.571131i \(-0.193495\pi\)
0.820859 + 0.571131i \(0.193495\pi\)
\(314\) −5.78504 + 334.349i −0.0184237 + 1.06481i
\(315\) 49.9415i 0.158544i
\(316\) −2.16297 + 62.4860i −0.00684483 + 0.197741i
\(317\) −559.731 −1.76571 −0.882857 0.469642i \(-0.844383\pi\)
−0.882857 + 0.469642i \(0.844383\pi\)
\(318\) 75.1990 + 1.30112i 0.236475 + 0.00409158i
\(319\) 906.914i 2.84299i
\(320\) 400.523 + 41.7259i 1.25163 + 0.130393i
\(321\) −83.5000 −0.260125
\(322\) −2.66337 + 153.931i −0.00827135 + 0.478046i
\(323\) 130.848i 0.405102i
\(324\) −35.9785 1.24540i −0.111045 0.00384383i
\(325\) 206.136 0.634265
\(326\) 441.117 + 7.63239i 1.35312 + 0.0234122i
\(327\) 154.809i 0.473422i
\(328\) 13.9368 268.280i 0.0424902 0.817926i
\(329\) 72.6769 0.220902
\(330\) 6.25195 361.334i 0.0189453 1.09495i
\(331\) 379.794i 1.14741i 0.819061 + 0.573707i \(0.194495\pi\)
−0.819061 + 0.573707i \(0.805505\pi\)
\(332\) −6.84271 + 197.680i −0.0206106 + 0.595420i
\(333\) −80.4119 −0.241477
\(334\) 129.286 + 2.23697i 0.387085 + 0.00669751i
\(335\) 600.421i 1.79230i
\(336\) −73.1457 5.06998i −0.217696 0.0150892i
\(337\) −117.618 −0.349015 −0.174507 0.984656i \(-0.555833\pi\)
−0.174507 + 0.984656i \(0.555833\pi\)
\(338\) 1.05957 61.2380i 0.00313481 0.181178i
\(339\) 161.889i 0.477549i
\(340\) −514.851 17.8217i −1.51427 0.0524167i
\(341\) 244.222 0.716192
\(342\) 38.3498 + 0.663543i 0.112134 + 0.00194018i
\(343\) 18.5203i 0.0539949i
\(344\) 30.6178 + 1.59056i 0.0890053 + 0.00462371i
\(345\) 317.076 0.919061
\(346\) 8.20516 474.221i 0.0237143 1.37058i
\(347\) 302.706i 0.872351i −0.899862 0.436175i \(-0.856333\pi\)
0.899862 0.436175i \(-0.143667\pi\)
\(348\) −13.1100 + 378.735i −0.0376723 + 1.08832i
\(349\) 83.1588 0.238277 0.119139 0.992878i \(-0.461987\pi\)
0.119139 + 0.992878i \(0.461987\pi\)
\(350\) −77.1902 1.33558i −0.220543 0.00381593i
\(351\) 73.4155i 0.209161i
\(352\) −528.585 45.8388i −1.50166 0.130224i
\(353\) −277.478 −0.786057 −0.393028 0.919526i \(-0.628573\pi\)
−0.393028 + 0.919526i \(0.628573\pi\)
\(354\) 3.24419 187.499i 0.00916437 0.529658i
\(355\) 350.167i 0.986387i
\(356\) −156.918 5.43175i −0.440781 0.0152577i
\(357\) 93.7993 0.262743
\(358\) 206.276 + 3.56906i 0.576189 + 0.00996945i
\(359\) 76.3214i 0.212594i 0.994334 + 0.106297i \(0.0338995\pi\)
−0.994334 + 0.106297i \(0.966101\pi\)
\(360\) −7.83416 + 150.806i −0.0217615 + 0.418904i
\(361\) 320.135 0.886800
\(362\) 1.50751 87.1273i 0.00416440 0.240683i
\(363\) 266.572i 0.734358i
\(364\) −5.17275 + 149.436i −0.0142109 + 0.410538i
\(365\) −820.962 −2.24921
\(366\) 123.715 + 2.14057i 0.338019 + 0.00584855i
\(367\) 176.403i 0.480663i 0.970691 + 0.240332i \(0.0772562\pi\)
−0.970691 + 0.240332i \(0.922744\pi\)
\(368\) 32.1890 464.398i 0.0874702 1.26195i
\(369\) 100.741 0.273010
\(370\) −5.83529 + 337.253i −0.0157710 + 0.911494i
\(371\) 57.4428i 0.154832i
\(372\) −101.989 3.53037i −0.274164 0.00949023i
\(373\) 57.5272 0.154229 0.0771143 0.997022i \(-0.475429\pi\)
0.0771143 + 0.997022i \(0.475429\pi\)
\(374\) 678.651 + 11.7423i 1.81458 + 0.0313965i
\(375\) 113.452i 0.302539i
\(376\) −219.458 11.4006i −0.583666 0.0303207i
\(377\) 772.823 2.04993
\(378\) 0.475666 27.4913i 0.00125838 0.0727284i
\(379\) 412.402i 1.08813i 0.839042 + 0.544066i \(0.183116\pi\)
−0.839042 + 0.544066i \(0.816884\pi\)
\(380\) 5.56589 160.793i 0.0146471 0.423140i
\(381\) −360.787 −0.946948
\(382\) 438.553 + 7.58803i 1.14805 + 0.0198640i
\(383\) 583.323i 1.52304i 0.648143 + 0.761518i \(0.275546\pi\)
−0.648143 + 0.761518i \(0.724454\pi\)
\(384\) 220.079 + 26.7837i 0.573122 + 0.0697491i
\(385\) 276.015 0.716921
\(386\) 0.325331 18.8026i 0.000842826 0.0487115i
\(387\) 11.4972i 0.0297084i
\(388\) 687.360 + 23.7931i 1.77155 + 0.0613224i
\(389\) 64.4937 0.165794 0.0828968 0.996558i \(-0.473583\pi\)
0.0828968 + 0.996558i \(0.473583\pi\)
\(390\) 307.909 + 5.32758i 0.789511 + 0.0136605i
\(391\) 595.527i 1.52309i
\(392\) 2.90521 55.9246i 0.00741125 0.142665i
\(393\) −117.380 −0.298677
\(394\) 11.3899 658.287i 0.0289085 1.67078i
\(395\) 98.3500i 0.248987i
\(396\) 6.88303 198.844i 0.0173814 0.502132i
\(397\) −0.702051 −0.00176839 −0.000884195 1.00000i \(-0.500281\pi\)
−0.000884195 1.00000i \(0.500281\pi\)
\(398\) 125.991 + 2.17995i 0.316561 + 0.00547727i
\(399\) 29.2945i 0.0734198i
\(400\) 232.877 + 16.1415i 0.582194 + 0.0403538i
\(401\) 61.3178 0.152912 0.0764561 0.997073i \(-0.475640\pi\)
0.0764561 + 0.997073i \(0.475640\pi\)
\(402\) −5.71869 + 330.514i −0.0142256 + 0.822175i
\(403\) 208.113i 0.516408i
\(404\) −455.259 15.7589i −1.12688 0.0390071i
\(405\) −56.6284 −0.139823
\(406\) −289.393 5.00720i −0.712791 0.0123330i
\(407\) 444.417i 1.09193i
\(408\) −283.241 14.7140i −0.694217 0.0360637i
\(409\) −109.489 −0.267700 −0.133850 0.991002i \(-0.542734\pi\)
−0.133850 + 0.991002i \(0.542734\pi\)
\(410\) 7.31049 422.513i 0.0178305 1.03052i
\(411\) 23.2315i 0.0565242i
\(412\) −12.9747 + 374.827i −0.0314920 + 0.909774i
\(413\) 143.226 0.346795
\(414\) 174.541 + 3.01998i 0.421597 + 0.00729464i
\(415\) 311.138i 0.749731i
\(416\) 39.0614 450.432i 0.0938975 1.08277i
\(417\) −277.790 −0.666164
\(418\) −3.66724 + 211.950i −0.00877331 + 0.507057i
\(419\) 312.627i 0.746128i −0.927806 0.373064i \(-0.878307\pi\)
0.927806 0.373064i \(-0.121693\pi\)
\(420\) −115.266 3.98995i −0.274443 0.00949989i
\(421\) 633.267 1.50420 0.752099 0.659050i \(-0.229042\pi\)
0.752099 + 0.659050i \(0.229042\pi\)
\(422\) −1.40460 0.0243030i −0.00332844 5.75900e-5i
\(423\) 82.4078i 0.194818i
\(424\) 9.01085 173.457i 0.0212520 0.409096i
\(425\) −298.633 −0.702667
\(426\) 3.33516 192.757i 0.00782901 0.452481i
\(427\) 94.5031i 0.221319i
\(428\) −6.67103 + 192.720i −0.0155865 + 0.450280i
\(429\) −405.750 −0.945803
\(430\) 48.2199 + 0.834320i 0.112139 + 0.00194028i
\(431\) 46.7851i 0.108550i −0.998526 0.0542750i \(-0.982715\pi\)
0.998526 0.0542750i \(-0.0172848\pi\)
\(432\) −5.74882 + 82.9394i −0.0133074 + 0.191989i
\(433\) 71.4224 0.164948 0.0824739 0.996593i \(-0.473718\pi\)
0.0824739 + 0.996593i \(0.473718\pi\)
\(434\) 1.34838 77.9303i 0.00310687 0.179563i
\(435\) 596.110i 1.37037i
\(436\) −357.302 12.3681i −0.819500 0.0283672i
\(437\) −185.989 −0.425605
\(438\) −451.915 7.81923i −1.03177 0.0178521i
\(439\) 0.829943i 0.00189053i 1.00000 0.000945266i \(0.000300887\pi\)
−1.00000 0.000945266i \(0.999699\pi\)
\(440\) −833.466 43.2975i −1.89424 0.0984033i
\(441\) 21.0000 0.0476190
\(442\) −10.0062 + 578.311i −0.0226384 + 1.30839i
\(443\) 770.065i 1.73830i −0.494552 0.869148i \(-0.664668\pi\)
0.494552 0.869148i \(-0.335332\pi\)
\(444\) −6.42431 + 185.592i −0.0144692 + 0.418000i
\(445\) −246.981 −0.555014
\(446\) −521.008 9.01469i −1.16818 0.0202123i
\(447\) 226.594i 0.506922i
\(448\) −17.5454 + 168.417i −0.0391638 + 0.375930i
\(449\) −80.0955 −0.178386 −0.0891932 0.996014i \(-0.528429\pi\)
−0.0891932 + 0.996014i \(0.528429\pi\)
\(450\) −1.51440 + 87.5255i −0.00336534 + 0.194501i
\(451\) 556.769i 1.23452i
\(452\) −373.643 12.9337i −0.826644 0.0286144i
\(453\) 304.589 0.672382
\(454\) −444.226 7.68617i −0.978470 0.0169299i
\(455\) 235.205i 0.516934i
\(456\) 4.59533 88.4589i 0.0100775 0.193989i
\(457\) −178.912 −0.391493 −0.195747 0.980654i \(-0.562713\pi\)
−0.195747 + 0.980654i \(0.562713\pi\)
\(458\) 4.31736 249.524i 0.00942656 0.544812i
\(459\) 106.358i 0.231718i
\(460\) 25.3320 731.818i 0.0550696 1.59091i
\(461\) −320.864 −0.696017 −0.348009 0.937491i \(-0.613142\pi\)
−0.348009 + 0.937491i \(0.613142\pi\)
\(462\) 151.938 + 2.62889i 0.328870 + 0.00569024i
\(463\) 597.651i 1.29082i −0.763835 0.645411i \(-0.776686\pi\)
0.763835 0.645411i \(-0.223314\pi\)
\(464\) 873.079 + 60.5161i 1.88164 + 0.130423i
\(465\) −160.526 −0.345216
\(466\) 11.4982 664.542i 0.0246742 1.42606i
\(467\) 578.307i 1.23834i −0.785255 0.619172i \(-0.787468\pi\)
0.785255 0.619172i \(-0.212532\pi\)
\(468\) 169.444 + 5.86535i 0.362061 + 0.0125328i
\(469\) −252.472 −0.538320
\(470\) −345.624 5.98013i −0.735370 0.0127237i
\(471\) 289.598i 0.614858i
\(472\) −432.492 22.4674i −0.916297 0.0476004i
\(473\) −63.5420 −0.134338
\(474\) −0.936732 + 54.1388i −0.00197623 + 0.114217i
\(475\) 93.2663i 0.196350i
\(476\) 7.49386 216.491i 0.0157434 0.454812i
\(477\) 65.1340 0.136549
\(478\) 570.084 + 9.86383i 1.19264 + 0.0206356i
\(479\) 543.921i 1.13554i 0.823189 + 0.567768i \(0.192193\pi\)
−0.823189 + 0.567768i \(0.807807\pi\)
\(480\) 347.436 + 30.1296i 0.723826 + 0.0627700i
\(481\) 378.708 0.787336
\(482\) 3.08744 178.440i 0.00640547 0.370207i
\(483\) 133.328i 0.276041i
\(484\) 615.253 + 21.2971i 1.27118 + 0.0440022i
\(485\) 1081.87 2.23066
\(486\) −31.1722 0.539355i −0.0641404 0.00110978i
\(487\) 25.1657i 0.0516750i −0.999666 0.0258375i \(-0.991775\pi\)
0.999666 0.0258375i \(-0.00822524\pi\)
\(488\) 14.8244 285.366i 0.0303778 0.584766i
\(489\) 382.076 0.781341
\(490\) 1.52392 88.0754i 0.00311003 0.179746i
\(491\) 876.015i 1.78414i 0.451894 + 0.892072i \(0.350749\pi\)
−0.451894 + 0.892072i \(0.649251\pi\)
\(492\) 8.04842 232.511i 0.0163586 0.472584i
\(493\) −1119.60 −2.27100
\(494\) −180.612 3.12503i −0.365612 0.00632597i
\(495\) 312.971i 0.632265i
\(496\) −16.2963 + 235.110i −0.0328554 + 0.474013i
\(497\) 147.243 0.296263
\(498\) −2.96343 + 171.272i −0.00595065 + 0.343921i
\(499\) 9.06767i 0.0181717i 0.999959 + 0.00908584i \(0.00289215\pi\)
−0.999959 + 0.00908584i \(0.997108\pi\)
\(500\) −261.850 9.06397i −0.523699 0.0181279i
\(501\) 111.982 0.223517
\(502\) 166.897 + 2.88772i 0.332465 + 0.00575244i
\(503\) 433.976i 0.862774i −0.902167 0.431387i \(-0.858024\pi\)
0.902167 0.431387i \(-0.141976\pi\)
\(504\) −63.4125 3.29420i −0.125819 0.00653611i
\(505\) −716.556 −1.41892
\(506\) −16.6907 + 964.646i −0.0329856 + 1.90642i
\(507\) 53.0416i 0.104619i
\(508\) −28.8242 + 832.703i −0.0567405 + 1.63918i
\(509\) −335.775 −0.659675 −0.329838 0.944038i \(-0.606994\pi\)
−0.329838 + 0.944038i \(0.606994\pi\)
\(510\) −446.074 7.71816i −0.874656 0.0151337i
\(511\) 345.208i 0.675553i
\(512\) 79.3998 505.806i 0.155078 0.987902i
\(513\) 33.2168 0.0647502
\(514\) −1.03321 + 59.7149i −0.00201014 + 0.116177i
\(515\) 589.960i 1.14555i
\(516\) 26.5357 + 0.918537i 0.0514257 + 0.00178011i
\(517\) 455.448 0.880944
\(518\) −141.812 2.45369i −0.273768 0.00473685i
\(519\) 410.748i 0.791423i
\(520\) 36.8958 710.235i 0.0709535 1.36584i
\(521\) 540.822 1.03805 0.519023 0.854760i \(-0.326296\pi\)
0.519023 + 0.854760i \(0.326296\pi\)
\(522\) −5.67763 + 328.141i −0.0108767 + 0.628623i
\(523\) 337.109i 0.644568i −0.946643 0.322284i \(-0.895549\pi\)
0.946643 0.322284i \(-0.104451\pi\)
\(524\) −9.37780 + 270.916i −0.0178966 + 0.517015i
\(525\) −66.8587 −0.127350
\(526\) 490.535 + 8.48745i 0.932577 + 0.0161358i
\(527\) 301.497i 0.572100i
\(528\) −458.386 31.7723i −0.868155 0.0601748i
\(529\) −317.492 −0.600175
\(530\) 4.72661 273.176i 0.00891812 0.515427i
\(531\) 162.403i 0.305844i
\(532\) 67.6122 + 2.34041i 0.127091 + 0.00439927i
\(533\) −474.449 −0.890147
\(534\) −135.956 2.35237i −0.254599 0.00440518i
\(535\) 303.331i 0.566975i
\(536\) 762.376 + 39.6045i 1.42234 + 0.0738889i
\(537\) 178.667 0.332712
\(538\) −0.655458 + 37.8825i −0.00121832 + 0.0704135i
\(539\) 116.062i 0.215328i
\(540\) −4.52418 + 130.699i −0.00837811 + 0.242036i
\(541\) 210.355 0.388827 0.194413 0.980920i \(-0.437720\pi\)
0.194413 + 0.980920i \(0.437720\pi\)
\(542\) 557.772 + 9.65079i 1.02910 + 0.0178059i
\(543\) 75.4657i 0.138979i
\(544\) −56.5890 + 652.549i −0.104024 + 1.19954i
\(545\) −562.376 −1.03188
\(546\) −2.24020 + 129.473i −0.00410293 + 0.237131i
\(547\) 228.588i 0.417894i −0.977927 0.208947i \(-0.932996\pi\)
0.977927 0.208947i \(-0.0670036\pi\)
\(548\) 53.6187 + 1.85602i 0.0978443 + 0.00338690i
\(549\) 107.156 0.195185
\(550\) −483.732 8.36973i −0.879513 0.0152177i
\(551\) 349.664i 0.634599i
\(552\) 20.9147 402.603i 0.0378890 0.729353i
\(553\) −41.3554 −0.0747837
\(554\) −7.13956 + 412.634i −0.0128873 + 0.744826i
\(555\) 292.113i 0.526330i
\(556\) −22.1934 + 641.145i −0.0399161 + 1.15314i
\(557\) 129.632 0.232732 0.116366 0.993206i \(-0.462875\pi\)
0.116366 + 0.993206i \(0.462875\pi\)
\(558\) −88.3647 1.52892i −0.158360 0.00274000i
\(559\) 54.1471i 0.0968643i
\(560\) −18.4178 + 265.717i −0.0328889 + 0.474495i
\(561\) 587.817 1.04780
\(562\) −9.09192 + 525.471i −0.0161778 + 0.935002i
\(563\) 718.440i 1.27609i −0.769998 0.638046i \(-0.779743\pi\)
0.769998 0.638046i \(-0.220257\pi\)
\(564\) −190.199 6.58377i −0.337232 0.0116733i
\(565\) −588.096 −1.04088
\(566\) 1086.85 + 18.8052i 1.92024 + 0.0332247i
\(567\) 23.8118i 0.0419961i
\(568\) −444.620 23.0974i −0.782782 0.0406645i
\(569\) 736.365 1.29414 0.647069 0.762431i \(-0.275994\pi\)
0.647069 + 0.762431i \(0.275994\pi\)
\(570\) 2.41046 139.314i 0.00422888 0.244410i
\(571\) 161.022i 0.282001i −0.990010 0.141000i \(-0.954968\pi\)
0.990010 0.141000i \(-0.0450319\pi\)
\(572\) −32.4163 + 936.478i −0.0566719 + 1.63720i
\(573\) 379.855 0.662923
\(574\) 177.663 + 3.07400i 0.309518 + 0.00535540i
\(575\) 424.483i 0.738230i
\(576\) 190.967 + 19.8946i 0.331539 + 0.0345393i
\(577\) 748.940 1.29799 0.648995 0.760793i \(-0.275190\pi\)
0.648995 + 0.760793i \(0.275190\pi\)
\(578\) 4.49683 259.896i 0.00777998 0.449647i
\(579\) 16.2860i 0.0281278i
\(580\) 1375.83 + 47.6247i 2.37213 + 0.0821116i
\(581\) −130.831 −0.225183
\(582\) 595.538 + 10.3042i 1.02326 + 0.0177049i
\(583\) 359.980i 0.617461i
\(584\) −54.1516 + 1042.40i −0.0927253 + 1.78494i
\(585\) 266.697 0.455893
\(586\) 0.664084 38.3810i 0.00113325 0.0654966i
\(587\) 261.696i 0.445819i −0.974839 0.222910i \(-0.928444\pi\)
0.974839 0.222910i \(-0.0715555\pi\)
\(588\) 1.67774 48.4684i 0.00285330 0.0824292i
\(589\) 94.1605 0.159865
\(590\) −681.130 11.7852i −1.15446 0.0199749i
\(591\) 570.178i 0.964769i
\(592\) 427.837 + 29.6548i 0.722698 + 0.0500926i
\(593\) −284.492 −0.479750 −0.239875 0.970804i \(-0.577106\pi\)
−0.239875 + 0.970804i \(0.577106\pi\)
\(594\) 2.98088 172.281i 0.00501832 0.290036i
\(595\) 340.746i 0.572682i
\(596\) 522.984 + 18.1032i 0.877489 + 0.0303745i
\(597\) 109.128 0.182794
\(598\) −822.020 14.2229i −1.37462 0.0237842i
\(599\) 358.608i 0.598678i −0.954147 0.299339i \(-0.903234\pi\)
0.954147 0.299339i \(-0.0967662\pi\)
\(600\) 201.889 + 10.4879i 0.336482 + 0.0174798i
\(601\) −404.112 −0.672399 −0.336200 0.941791i \(-0.609142\pi\)
−0.336200 + 0.941791i \(0.609142\pi\)
\(602\) −0.350825 + 20.2761i −0.000582765 + 0.0336812i
\(603\) 286.277i 0.474754i
\(604\) 24.3344 702.997i 0.0402887 1.16390i
\(605\) 968.378 1.60063
\(606\) −394.443 6.82482i −0.650896 0.0112621i
\(607\) 608.215i 1.00200i 0.865447 + 0.501001i \(0.167035\pi\)
−0.865447 + 0.501001i \(0.832965\pi\)
\(608\) −203.798 17.6733i −0.335194 0.0290679i
\(609\) −250.659 −0.411592
\(610\) 7.77607 449.421i 0.0127476 0.736756i
\(611\) 388.108i 0.635202i
\(612\) −245.477 8.49724i −0.401107 0.0138844i
\(613\) −741.906 −1.21029 −0.605143 0.796117i \(-0.706884\pi\)
−0.605143 + 0.796117i \(0.706884\pi\)
\(614\) −1086.08 18.7918i −1.76886 0.0306055i
\(615\) 365.961i 0.595059i
\(616\) 18.2062 350.466i 0.0295556 0.568938i
\(617\) 788.372 1.27775 0.638875 0.769310i \(-0.279400\pi\)
0.638875 + 0.769310i \(0.279400\pi\)
\(618\) −5.61905 + 324.755i −0.00909232 + 0.525494i
\(619\) 1053.85i 1.70251i −0.524754 0.851254i \(-0.675843\pi\)
0.524754 0.851254i \(-0.324157\pi\)
\(620\) −12.8248 + 370.496i −0.0206852 + 0.597575i
\(621\) 151.180 0.243446
\(622\) −366.253 6.33707i −0.588832 0.0101882i
\(623\) 103.854i 0.166699i
\(624\) 27.0747 390.612i 0.0433889 0.625981i
\(625\) −776.883 −1.24301
\(626\) 17.7793 1027.56i 0.0284014 1.64147i
\(627\) 183.581i 0.292793i
\(628\) 668.398 + 23.1367i 1.06433 + 0.0368419i
\(629\) −548.642 −0.872245
\(630\) −99.8681 1.72796i −0.158521 0.00274279i
\(631\) 729.494i 1.15609i −0.816004 0.578046i \(-0.803815\pi\)
0.816004 0.578046i \(-0.196185\pi\)
\(632\) 124.879 + 6.48728i 0.197593 + 0.0102647i
\(633\) −1.21660 −0.00192196
\(634\) −19.3665 + 1119.30i −0.0305465 + 1.76545i
\(635\) 1310.63i 2.06399i
\(636\) 5.20371 150.330i 0.00818194 0.236369i
\(637\) −98.9018 −0.155262
\(638\) −1813.56 31.3789i −2.84256 0.0491832i
\(639\) 166.957i 0.261279i
\(640\) 97.2973 799.482i 0.152027 1.24919i
\(641\) 258.186 0.402787 0.201393 0.979510i \(-0.435453\pi\)
0.201393 + 0.979510i \(0.435453\pi\)
\(642\) −2.88907 + 166.975i −0.00450011 + 0.260086i
\(643\) 844.440i 1.31328i 0.754203 + 0.656641i \(0.228023\pi\)
−0.754203 + 0.656641i \(0.771977\pi\)
\(644\) 307.723 + 10.6519i 0.477831 + 0.0165402i
\(645\) 41.7659 0.0647533
\(646\) 261.656 + 4.52729i 0.405041 + 0.00700819i
\(647\) 94.5538i 0.146142i 0.997327 + 0.0730709i \(0.0232799\pi\)
−0.997327 + 0.0730709i \(0.976720\pi\)
\(648\) −3.73527 + 71.9030i −0.00576431 + 0.110961i
\(649\) 897.563 1.38299
\(650\) 7.13224 412.211i 0.0109727 0.634170i
\(651\) 67.4997i 0.103686i
\(652\) 30.5250 881.838i 0.0468174 1.35251i
\(653\) −239.621 −0.366954 −0.183477 0.983024i \(-0.558735\pi\)
−0.183477 + 0.983024i \(0.558735\pi\)
\(654\) −309.572 5.35634i −0.473351 0.00819012i
\(655\) 426.408i 0.651005i
\(656\) −535.997 37.1518i −0.817069 0.0566338i
\(657\) −391.429 −0.595782
\(658\) 2.51459 145.332i 0.00382157 0.220869i
\(659\) 150.618i 0.228555i 0.993449 + 0.114278i \(0.0364553\pi\)
−0.993449 + 0.114278i \(0.963545\pi\)
\(660\) −722.343 25.0040i −1.09446 0.0378849i
\(661\) −575.893 −0.871246 −0.435623 0.900129i \(-0.643472\pi\)
−0.435623 + 0.900129i \(0.643472\pi\)
\(662\) 759.474 + 13.1407i 1.14724 + 0.0198500i
\(663\) 500.907i 0.755515i
\(664\) 395.063 + 20.5230i 0.594975 + 0.0309082i
\(665\) 106.418 0.160028
\(666\) −2.78222 + 160.800i −0.00417751 + 0.241441i
\(667\) 1591.42i 2.38594i
\(668\) 8.94653 258.457i 0.0133930 0.386912i
\(669\) −451.273 −0.674549
\(670\) 1200.66 + 20.7744i 1.79203 + 0.0310065i
\(671\) 592.227i 0.882604i
\(672\) −12.6693 + 146.094i −0.0188531 + 0.217402i
\(673\) −614.833 −0.913571 −0.456785 0.889577i \(-0.650999\pi\)
−0.456785 + 0.889577i \(0.650999\pi\)
\(674\) −4.06954 + 235.201i −0.00603789 + 0.348962i
\(675\) 75.8106i 0.112312i
\(676\) −122.421 4.23763i −0.181096 0.00626868i
\(677\) −308.666 −0.455933 −0.227966 0.973669i \(-0.573208\pi\)
−0.227966 + 0.973669i \(0.573208\pi\)
\(678\) −323.730 5.60130i −0.477477 0.00826151i
\(679\) 454.918i 0.669982i
\(680\) −53.4517 + 1028.93i −0.0786054 + 1.51313i
\(681\) −384.768 −0.565005
\(682\) 8.44998 488.370i 0.0123900 0.716085i
\(683\) 143.442i 0.210018i 0.994471 + 0.105009i \(0.0334871\pi\)
−0.994471 + 0.105009i \(0.966513\pi\)
\(684\) 2.65378 76.6651i 0.00387979 0.112083i
\(685\) 84.3932 0.123202
\(686\) 37.0350 + 0.640794i 0.0539868 + 0.000934103i
\(687\) 216.126i 0.314594i
\(688\) 4.24000 61.1715i 0.00616279 0.0889120i
\(689\) −306.755 −0.445218
\(690\) 10.9707 634.057i 0.0158996 0.918924i
\(691\) 366.656i 0.530616i −0.964164 0.265308i \(-0.914526\pi\)
0.964164 0.265308i \(-0.0854737\pi\)
\(692\) −948.015 32.8157i −1.36996 0.0474216i
\(693\) 131.602 0.189902
\(694\) −605.321 10.4735i −0.872220 0.0150915i
\(695\) 1009.13i 1.45199i
\(696\) 756.902 + 39.3201i 1.08750 + 0.0564944i
\(697\) 687.343 0.986145
\(698\) 2.87726 166.293i 0.00412215 0.238242i
\(699\) 575.597i 0.823457i
\(700\) −5.34151 + 154.311i −0.00763073 + 0.220444i
\(701\) 125.995 0.179736 0.0898681 0.995954i \(-0.471355\pi\)
0.0898681 + 0.995954i \(0.471355\pi\)
\(702\) 146.809 + 2.54015i 0.209130 + 0.00361845i
\(703\) 171.347i 0.243736i
\(704\) −109.953 + 1055.43i −0.156183 + 1.49918i
\(705\) −299.364 −0.424630
\(706\) −9.60064 + 554.873i −0.0135986 + 0.785939i
\(707\) 301.306i 0.426175i
\(708\) −374.830 12.9748i −0.529421 0.0183260i
\(709\) −159.688 −0.225230 −0.112615 0.993639i \(-0.535923\pi\)
−0.112615 + 0.993639i \(0.535923\pi\)
\(710\) −700.230 12.1157i −0.986239 0.0170643i
\(711\) 46.8926i 0.0659530i
\(712\) −16.2912 + 313.601i −0.0228809 + 0.440451i
\(713\) 428.552 0.601055
\(714\) 3.24542 187.571i 0.00454541 0.262704i
\(715\) 1473.97i 2.06150i
\(716\) 14.2741 412.366i 0.0199359 0.575930i
\(717\) 493.781 0.688677
\(718\) 152.620 + 2.64069i 0.212563 + 0.00367785i
\(719\) 1368.60i 1.90348i 0.306899 + 0.951742i \(0.400708\pi\)
−0.306899 + 0.951742i \(0.599292\pi\)
\(720\) 301.295 + 20.8838i 0.418465 + 0.0290053i
\(721\) −248.073 −0.344068
\(722\) 11.0766 640.174i 0.0153415 0.886668i
\(723\) 154.556i 0.213771i
\(724\) −174.176 6.02914i −0.240575 0.00832755i
\(725\) 798.036 1.10074
\(726\) 533.064 + 9.22329i 0.734248 + 0.0127043i
\(727\) 510.747i 0.702540i −0.936274 0.351270i \(-0.885750\pi\)
0.936274 0.351270i \(-0.114250\pi\)
\(728\) 298.648 + 15.5144i 0.410231 + 0.0213110i
\(729\) −27.0000 −0.0370370
\(730\) −28.4050 + 1641.68i −0.0389109 + 2.24887i
\(731\) 78.4440i 0.107311i
\(732\) 8.56099 247.319i 0.0116953 0.337867i
\(733\) −774.969 −1.05726 −0.528628 0.848853i \(-0.677293\pi\)
−0.528628 + 0.848853i \(0.677293\pi\)
\(734\) 352.754 + 6.10350i 0.480592 + 0.00831539i
\(735\) 76.2869i 0.103792i
\(736\) −927.544 80.4365i −1.26025 0.109289i
\(737\) −1582.18 −2.14679
\(738\) 3.48559 201.451i 0.00472302 0.272969i
\(739\) 1349.26i 1.82579i 0.408194 + 0.912895i \(0.366159\pi\)
−0.408194 + 0.912895i \(0.633841\pi\)
\(740\) 674.203 + 23.3376i 0.911085 + 0.0315374i
\(741\) −156.438 −0.211118
\(742\) 114.868 + 1.98750i 0.154809 + 0.00267857i
\(743\) 853.994i 1.14939i −0.818369 0.574693i \(-0.805122\pi\)
0.818369 0.574693i \(-0.194878\pi\)
\(744\) −10.5885 + 203.825i −0.0142318 + 0.273959i
\(745\) 823.151 1.10490
\(746\) 1.99042 115.037i 0.00266813 0.154205i
\(747\) 148.348i 0.198592i
\(748\) 46.9622 1356.69i 0.0627837 1.81376i
\(749\) −127.548 −0.170292
\(750\) −226.870 3.92540i −0.302494 0.00523387i
\(751\) 509.524i 0.678460i 0.940703 + 0.339230i \(0.110167\pi\)
−0.940703 + 0.339230i \(0.889833\pi\)
\(752\) −30.3909 + 438.456i −0.0404135 + 0.583054i
\(753\) 144.559 0.191977
\(754\) 26.7394 1545.42i 0.0354634 2.04962i
\(755\) 1106.48i 1.46554i
\(756\) −54.9580 1.90238i −0.0726958 0.00251638i
\(757\) 1373.83 1.81484 0.907418 0.420228i \(-0.138050\pi\)
0.907418 + 0.420228i \(0.138050\pi\)
\(758\) 824.681 + 14.2690i 1.08797 + 0.0188245i
\(759\) 835.533i 1.10083i
\(760\) −321.346 16.6935i −0.422823 0.0219651i
\(761\) −1165.32 −1.53130 −0.765652 0.643255i \(-0.777583\pi\)
−0.765652 + 0.643255i \(0.777583\pi\)
\(762\) −12.4831 + 721.466i −0.0163820 + 0.946806i
\(763\) 236.475i 0.309927i
\(764\) 30.3476 876.713i 0.0397220 1.14753i
\(765\) −386.370 −0.505058
\(766\) 1166.47 + 20.1828i 1.52281 + 0.0263483i
\(767\) 764.855i 0.997204i
\(768\) 61.1739 439.165i 0.0796536 0.571829i
\(769\) −686.335 −0.892503 −0.446251 0.894908i \(-0.647241\pi\)
−0.446251 + 0.894908i \(0.647241\pi\)
\(770\) 9.55001 551.947i 0.0124026 0.716814i
\(771\) 51.7223i 0.0670848i
\(772\) −37.5884 1.30113i −0.0486896 0.00168540i
\(773\) 244.058 0.315729 0.157864 0.987461i \(-0.449539\pi\)
0.157864 + 0.987461i \(0.449539\pi\)
\(774\) 22.9909 + 0.397798i 0.0297040 + 0.000513951i
\(775\) 214.902i 0.277293i
\(776\) 71.3614 1373.69i 0.0919606 1.77022i
\(777\) −122.831 −0.158084
\(778\) 2.23146 128.968i 0.00286820 0.165769i
\(779\) 214.664i 0.275564i
\(780\) 21.3071 615.542i 0.0273168 0.789157i
\(781\) 922.733 1.18148
\(782\) 1190.88 + 20.6050i 1.52286 + 0.0263491i
\(783\) 284.221i 0.362990i
\(784\) −111.732 7.74452i −0.142515 0.00987822i
\(785\) 1052.03 1.34016
\(786\) −4.06131 + 234.725i −0.00516707 + 0.298633i
\(787\) 959.027i 1.21859i 0.792945 + 0.609293i \(0.208547\pi\)
−0.792945 + 0.609293i \(0.791453\pi\)
\(788\) −1315.98 45.5530i −1.67003 0.0578083i
\(789\) 424.880 0.538504
\(790\) 196.671 + 3.40288i 0.248950 + 0.00430744i
\(791\) 247.290i 0.312629i
\(792\) −397.391 20.6439i −0.501756 0.0260656i
\(793\) −504.665 −0.636399
\(794\) −0.0242907 + 1.40389i −3.05928e−5 + 0.00176812i
\(795\) 236.613i 0.297626i
\(796\) 8.71850 251.869i 0.0109529 0.316419i
\(797\) 24.5322 0.0307807 0.0153903 0.999882i \(-0.495101\pi\)
0.0153903 + 0.999882i \(0.495101\pi\)
\(798\) 58.5802 + 1.01358i 0.0734088 + 0.00127015i
\(799\) 562.260i 0.703705i
\(800\) 40.3357 465.127i 0.0504196 0.581408i
\(801\) −117.759 −0.147015
\(802\) 2.12157 122.617i 0.00264535 0.152889i
\(803\) 2163.33i 2.69406i
\(804\) 660.732 + 22.8714i 0.821806 + 0.0284470i
\(805\) 484.342 0.601667
\(806\) 416.163 + 7.20062i 0.516331 + 0.00893377i
\(807\) 32.8121i 0.0406594i
\(808\) −47.2649 + 909.837i −0.0584961 + 1.12604i
\(809\) 673.148 0.832074 0.416037 0.909348i \(-0.363419\pi\)
0.416037 + 0.909348i \(0.363419\pi\)
\(810\) −1.95932 + 113.240i −0.00241891 + 0.139802i
\(811\) 386.219i 0.476226i 0.971237 + 0.238113i \(0.0765288\pi\)
−0.971237 + 0.238113i \(0.923471\pi\)
\(812\) −20.0258 + 578.527i −0.0246623 + 0.712471i
\(813\) 483.117 0.594239
\(814\) −888.701 15.3767i −1.09177 0.0188903i
\(815\) 1387.97i 1.70303i
\(816\) −39.2236 + 565.887i −0.0480681 + 0.693489i
\(817\) −24.4989 −0.0299864
\(818\) −3.78830 + 218.946i −0.00463117 + 0.267660i
\(819\) 112.144i 0.136928i
\(820\) −844.646 29.2376i −1.03006 0.0356556i
\(821\) 5.93033 0.00722330 0.00361165 0.999993i \(-0.498850\pi\)
0.00361165 + 0.999993i \(0.498850\pi\)
\(822\) 46.4560 + 0.803800i 0.0565158 + 0.000977859i
\(823\) 365.439i 0.444033i −0.975043 0.222016i \(-0.928736\pi\)
0.975043 0.222016i \(-0.0712638\pi\)
\(824\) 749.093 + 38.9144i 0.909093 + 0.0472262i
\(825\) −418.987 −0.507863
\(826\) 4.95558 286.410i 0.00599949 0.346743i
\(827\) 1236.80i 1.49552i 0.663968 + 0.747761i \(0.268871\pi\)
−0.663968 + 0.747761i \(0.731129\pi\)
\(828\) 12.0781 348.926i 0.0145871 0.421408i
\(829\) 899.957 1.08559 0.542797 0.839864i \(-0.317365\pi\)
0.542797 + 0.839864i \(0.317365\pi\)
\(830\) 622.183 + 10.7653i 0.749618 + 0.0129702i
\(831\) 357.405i 0.430090i
\(832\) −899.377 93.6958i −1.08098 0.112615i
\(833\) 143.281 0.172006
\(834\) −9.61144 + 555.497i −0.0115245 + 0.666064i
\(835\) 406.799i 0.487184i
\(836\) 423.709 + 14.6668i 0.506829 + 0.0175440i
\(837\) −76.5375 −0.0914427
\(838\) −625.161 10.8168i −0.746016 0.0129079i
\(839\) 473.095i 0.563880i 0.959432 + 0.281940i \(0.0909779\pi\)
−0.959432 + 0.281940i \(0.909022\pi\)
\(840\) −11.9669 + 230.359i −0.0142463 + 0.274237i
\(841\) 2150.91 2.55756
\(842\) 21.9108 1266.35i 0.0260224 1.50397i
\(843\) 455.140i 0.539905i
\(844\) −0.0971973 + 2.80794i −0.000115163 + 0.00332694i
\(845\) −192.685 −0.228029
\(846\) −164.791 2.85128i −0.194788 0.00337031i
\(847\) 407.195i 0.480750i
\(848\) −346.550 24.0205i −0.408667 0.0283261i
\(849\) 941.384 1.10881
\(850\) −10.3326 + 597.177i −0.0121560 + 0.702562i
\(851\) 779.849i 0.916391i
\(852\) −385.341 13.3386i −0.452278 0.0156557i
\(853\) −456.925 −0.535668 −0.267834 0.963465i \(-0.586308\pi\)
−0.267834 + 0.963465i \(0.586308\pi\)
\(854\) 188.978 + 3.26977i 0.221286 + 0.00382877i
\(855\) 120.667i 0.141131i
\(856\) 385.151 + 20.0081i 0.449943 + 0.0233739i
\(857\) −1460.48 −1.70417 −0.852087 0.523401i \(-0.824663\pi\)
−0.852087 + 0.523401i \(0.824663\pi\)
\(858\) −14.0388 + 811.378i −0.0163622 + 0.945662i
\(859\) 329.072i 0.383087i −0.981484 0.191544i \(-0.938651\pi\)
0.981484 0.191544i \(-0.0613493\pi\)
\(860\) 3.33678 96.3964i 0.00387998 0.112089i
\(861\) 153.884 0.178727
\(862\) −93.5562 1.61875i −0.108534 0.00187790i
\(863\) 528.421i 0.612307i 0.951982 + 0.306154i \(0.0990421\pi\)
−0.951982 + 0.306154i \(0.900958\pi\)
\(864\) 165.655 + 14.3656i 0.191731 + 0.0166268i
\(865\) −1492.13 −1.72501
\(866\) 2.47119 142.823i 0.00285357 0.164923i
\(867\) 225.110i 0.259643i
\(868\) −155.791 5.39272i −0.179482 0.00621281i
\(869\) −259.164 −0.298232
\(870\) 1192.04 + 20.6252i 1.37016 + 0.0237071i
\(871\) 1348.25i 1.54793i
\(872\) −37.0950 + 714.069i −0.0425401 + 0.818887i
\(873\) 515.828 0.590869
\(874\) −6.43516 + 371.923i −0.00736289 + 0.425541i
\(875\) 173.301i 0.198058i
\(876\) −31.2722 + 903.425i −0.0356989 + 1.03131i
\(877\) 532.559 0.607250 0.303625 0.952792i \(-0.401803\pi\)
0.303625 + 0.952792i \(0.401803\pi\)
\(878\) 1.65964 + 0.0287157i 0.00189025 + 3.27058e-5i
\(879\) 33.2439i 0.0378201i
\(880\) −115.420 + 1665.18i −0.131159 + 1.89225i
\(881\) −326.517 −0.370621 −0.185310 0.982680i \(-0.559329\pi\)
−0.185310 + 0.982680i \(0.559329\pi\)
\(882\) 0.726593 41.9937i 0.000823801 0.0476119i
\(883\) 31.0138i 0.0351232i 0.999846 + 0.0175616i \(0.00559032\pi\)
−0.999846 + 0.0175616i \(0.994410\pi\)
\(884\) 1156.10 + 40.0187i 1.30781 + 0.0452700i
\(885\) −589.964 −0.666626
\(886\) −1539.90 26.6440i −1.73804 0.0300722i
\(887\) 414.448i 0.467247i −0.972327 0.233623i \(-0.924942\pi\)
0.972327 0.233623i \(-0.0750583\pi\)
\(888\) 370.906 + 19.2681i 0.417687 + 0.0216983i
\(889\) −551.111 −0.619923
\(890\) −8.54547 + 493.889i −0.00960165 + 0.554931i
\(891\) 149.222i 0.167477i
\(892\) −36.0534 + 1041.55i −0.0404186 + 1.16765i
\(893\) 175.600 0.196640
\(894\) 453.121 + 7.84008i 0.506846 + 0.00876966i
\(895\) 649.044i 0.725189i
\(896\) 336.176 + 40.9127i 0.375196 + 0.0456615i
\(897\) −711.997 −0.793753
\(898\) −2.77127 + 160.167i −0.00308605 + 0.178360i
\(899\) 805.688i 0.896204i
\(900\) 174.972 + 6.05670i 0.194414 + 0.00672967i
\(901\) 444.402 0.493232
\(902\) 1113.37 + 19.2640i 1.23434 + 0.0213570i
\(903\) 17.5622i 0.0194487i
\(904\) −38.7915 + 746.726i −0.0429109 + 0.826025i
\(905\) −274.145 −0.302923
\(906\) 10.5387 609.087i 0.0116321 0.672282i
\(907\) 388.080i 0.427872i 0.976848 + 0.213936i \(0.0686283\pi\)
−0.976848 + 0.213936i \(0.931372\pi\)
\(908\) −30.7401 + 888.052i −0.0338547 + 0.978031i
\(909\) −341.649 −0.375851
\(910\) 470.339 + 8.13801i 0.516857 + 0.00894286i
\(911\) 891.807i 0.978932i −0.872023 0.489466i \(-0.837192\pi\)
0.872023 0.489466i \(-0.162808\pi\)
\(912\) −176.732 12.2499i −0.193786 0.0134319i
\(913\) −819.886 −0.898013
\(914\) −6.19031 + 357.771i −0.00677277 + 0.391435i
\(915\) 389.268i 0.425430i
\(916\) −498.824 17.2669i −0.544567 0.0188503i
\(917\) −179.301 −0.195530
\(918\) −212.685 3.67996i −0.231683 0.00400868i
\(919\) 390.619i 0.425048i 0.977156 + 0.212524i \(0.0681684\pi\)
−0.977156 + 0.212524i \(0.931832\pi\)
\(920\) −1462.54 75.9771i −1.58972 0.0825838i
\(921\) −940.713 −1.02140
\(922\) −11.1018 + 641.632i −0.0120410 + 0.695913i
\(923\) 786.304i 0.851900i
\(924\) 10.5140 303.739i 0.0113788 0.328722i
\(925\) 391.064 0.422771
\(926\) −1195.12 20.6785i −1.29063 0.0223310i
\(927\) 281.289i 0.303440i
\(928\) 151.222 1743.80i 0.162955 1.87910i
\(929\) −241.450 −0.259903 −0.129952 0.991520i \(-0.541482\pi\)
−0.129952 + 0.991520i \(0.541482\pi\)
\(930\) −5.55413 + 321.003i −0.00597218 + 0.345165i
\(931\) 44.7481i 0.0480645i
\(932\) −1328.49 45.9859i −1.42542 0.0493410i
\(933\) −317.232 −0.340013
\(934\) −1156.44 20.0092i −1.23816 0.0214231i
\(935\) 2135.37i 2.28382i
\(936\) 17.5917 338.635i 0.0187945 0.361790i
\(937\) −753.075 −0.803709 −0.401855 0.915703i \(-0.631634\pi\)
−0.401855 + 0.915703i \(0.631634\pi\)
\(938\) −8.73545 + 504.869i −0.00931285 + 0.538240i
\(939\) 890.028i 0.947847i
\(940\) −23.9169 + 690.937i −0.0254435 + 0.735040i
\(941\) 1372.35 1.45840 0.729199 0.684302i \(-0.239893\pi\)
0.729199 + 0.684302i \(0.239893\pi\)
\(942\) 579.109 + 10.0200i 0.614766 + 0.0106369i
\(943\) 977.000i 1.03606i
\(944\) −59.8922 + 864.077i −0.0634451 + 0.915336i
\(945\) −86.5012 −0.0915357
\(946\) −2.19853 + 127.065i −0.00232403 + 0.134318i
\(947\) 498.081i 0.525957i −0.964802 0.262979i \(-0.915295\pi\)
0.964802 0.262979i \(-0.0847048\pi\)
\(948\) 108.229 + 3.74637i 0.114166 + 0.00395186i
\(949\) 1843.48 1.94255
\(950\) −186.505 3.22698i −0.196321 0.00339682i
\(951\) 969.483i 1.01944i
\(952\) −432.657 22.4760i −0.454472 0.0236092i
\(953\) −117.526 −0.123322 −0.0616610 0.998097i \(-0.519640\pi\)
−0.0616610 + 0.998097i \(0.519640\pi\)
\(954\) 2.25361 130.248i 0.00236228 0.136529i
\(955\) 1379.90i 1.44493i
\(956\) 39.4494 1139.66i 0.0412651 1.19211i
\(957\) −1570.82 −1.64140
\(958\) 1087.68 + 18.8195i 1.13537 + 0.0196446i
\(959\) 35.4867i 0.0370038i
\(960\) 72.2714 693.726i 0.0752827 0.722631i
\(961\) 744.037 0.774233
\(962\) 13.1032 757.304i 0.0136208 0.787218i
\(963\) 144.626i 0.150183i
\(964\) −356.719 12.3479i −0.370041 0.0128090i
\(965\) −59.1623 −0.0613081
\(966\) 266.616 + 4.61310i 0.276000 + 0.00477546i
\(967\) 1016.54i 1.05123i 0.850723 + 0.525614i \(0.176164\pi\)
−0.850723 + 0.525614i \(0.823836\pi\)
\(968\) 63.8753 1229.58i 0.0659869 1.27023i
\(969\) 226.635 0.233886
\(970\) 37.4324 2163.42i 0.0385901 2.23033i
\(971\) 760.606i 0.783323i −0.920109 0.391661i \(-0.871900\pi\)
0.920109 0.391661i \(-0.128100\pi\)
\(972\) −2.15710 + 62.3165i −0.00221924 + 0.0641116i
\(973\) −424.332 −0.436107
\(974\) −50.3239 0.870724i −0.0516672 0.000893967i
\(975\) 357.038i 0.366193i
\(976\) −570.133 39.5179i −0.584153 0.0404896i
\(977\) −1823.13 −1.86605 −0.933026 0.359809i \(-0.882842\pi\)
−0.933026 + 0.359809i \(0.882842\pi\)
\(978\) 13.2197 764.037i 0.0135171 0.781224i
\(979\) 650.825i 0.664786i
\(980\) −176.072 6.09475i −0.179665 0.00621914i
\(981\) −268.137 −0.273330
\(982\) 1751.77 + 30.3098i 1.78388 + 0.0308654i
\(983\) 1400.51i 1.42473i 0.701809 + 0.712365i \(0.252376\pi\)
−0.701809 + 0.712365i \(0.747624\pi\)
\(984\) −464.674 24.1392i −0.472230 0.0245317i
\(985\) −2071.29 −2.10284
\(986\) −38.7379 + 2238.87i −0.0392879 + 2.27066i
\(987\) 125.880i 0.127538i
\(988\) −12.4982 + 361.062i −0.0126500 + 0.365448i
\(989\) −111.502 −0.112742
\(990\) −625.849 10.8287i −0.632170 0.0109381i
\(991\) 508.288i 0.512904i −0.966557 0.256452i \(-0.917446\pi\)
0.966557 0.256452i \(-0.0825536\pi\)
\(992\) 469.586 + 40.7225i 0.473373 + 0.0410509i
\(993\) 657.822 0.662459
\(994\) 5.09454 294.441i 0.00512529 0.296218i
\(995\) 396.430i 0.398422i
\(996\) 342.391 + 11.8519i 0.343766 + 0.0118995i
\(997\) 1357.91 1.36199 0.680997 0.732286i \(-0.261547\pi\)
0.680997 + 0.732286i \(0.261547\pi\)
\(998\) 18.1326 + 0.313738i 0.0181690 + 0.000314367i
\(999\) 139.277i 0.139417i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 84.3.g.a.43.5 12
3.2 odd 2 252.3.g.b.127.8 12
4.3 odd 2 inner 84.3.g.a.43.6 yes 12
7.6 odd 2 588.3.g.d.295.5 12
8.3 odd 2 1344.3.m.e.127.5 12
8.5 even 2 1344.3.m.e.127.11 12
12.11 even 2 252.3.g.b.127.7 12
28.27 even 2 588.3.g.d.295.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
84.3.g.a.43.5 12 1.1 even 1 trivial
84.3.g.a.43.6 yes 12 4.3 odd 2 inner
252.3.g.b.127.7 12 12.11 even 2
252.3.g.b.127.8 12 3.2 odd 2
588.3.g.d.295.5 12 7.6 odd 2
588.3.g.d.295.6 12 28.27 even 2
1344.3.m.e.127.5 12 8.3 odd 2
1344.3.m.e.127.11 12 8.5 even 2