L(s) = 1 | − 3i·3-s + 11.7i·5-s + 7·7-s − 9·9-s + 72.4i·11-s + 50.7i·13-s + 35.2·15-s + 60.4·17-s + 33.8i·19-s − 21i·21-s + 116.·23-s − 13.1·25-s + 27i·27-s + 13.1i·29-s − 250.·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.05i·5-s + 0.377·7-s − 0.333·9-s + 1.98i·11-s + 1.08i·13-s + 0.607·15-s + 0.862·17-s + 0.408i·19-s − 0.218i·21-s + 1.05·23-s − 0.105·25-s + 0.192i·27-s + 0.0844i·29-s − 1.44·31-s + ⋯ |
Λ(s)=(=(1344s/2ΓC(s)L(s)(−0.707−0.707i)Λ(4−s)
Λ(s)=(=(1344s/2ΓC(s+3/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1344
= 26⋅3⋅7
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
79.2985 |
Root analytic conductor: |
8.90497 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1344(673,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1344, ( :3/2), −0.707−0.707i)
|
Particular Values
L(2) |
≈ |
1.687537206 |
L(21) |
≈ |
1.687537206 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
| 7 | 1−7T |
good | 5 | 1−11.7iT−125T2 |
| 11 | 1−72.4iT−1.33e3T2 |
| 13 | 1−50.7iT−2.19e3T2 |
| 17 | 1−60.4T+4.91e3T2 |
| 19 | 1−33.8iT−6.85e3T2 |
| 23 | 1−116.T+1.21e4T2 |
| 29 | 1−13.1iT−2.43e4T2 |
| 31 | 1+250.T+2.97e4T2 |
| 37 | 1+92.7iT−5.06e4T2 |
| 41 | 1+69.1T+6.89e4T2 |
| 43 | 1−69.6iT−7.95e4T2 |
| 47 | 1+346.T+1.03e5T2 |
| 53 | 1+585.iT−1.48e5T2 |
| 59 | 1−66.1iT−2.05e5T2 |
| 61 | 1−492.iT−2.26e5T2 |
| 67 | 1−543.iT−3.00e5T2 |
| 71 | 1+365.T+3.57e5T2 |
| 73 | 1−374.T+3.89e5T2 |
| 79 | 1+670.T+4.93e5T2 |
| 83 | 1+595.iT−5.71e5T2 |
| 89 | 1−1.03e3T+7.04e5T2 |
| 97 | 1+218.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.639653033916567174488846561233, −8.734616664332026526785982283982, −7.54005221899838013245685373643, −7.17328298725753535607104001720, −6.57235464867312573158381614944, −5.39252812304442911460188923447, −4.46465949250789413520861282403, −3.35969749035689206787001635257, −2.21038186443268589270622727610, −1.51376594263855398858736005683,
0.40860185669227677756603194008, 1.20911046786029990205897541867, 2.98036916461063941588924319760, 3.62502650951338126484028111795, 4.94477461824578381953513203218, 5.36734108497429977835857882822, 6.16719014263078314467245894623, 7.58335556545201370265986916267, 8.362599375544047976033886118499, 8.832999577482346417785807433151