L(s) = 1 | − 3i·3-s + 11.7i·5-s + 7·7-s − 9·9-s + 72.4i·11-s + 50.7i·13-s + 35.2·15-s + 60.4·17-s + 33.8i·19-s − 21i·21-s + 116.·23-s − 13.1·25-s + 27i·27-s + 13.1i·29-s − 250.·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 1.05i·5-s + 0.377·7-s − 0.333·9-s + 1.98i·11-s + 1.08i·13-s + 0.607·15-s + 0.862·17-s + 0.408i·19-s − 0.218i·21-s + 1.05·23-s − 0.105·25-s + 0.192i·27-s + 0.0844i·29-s − 1.44·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1344 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.687537206\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.687537206\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + 3iT \) |
| 7 | \( 1 - 7T \) |
good | 5 | \( 1 - 11.7iT - 125T^{2} \) |
| 11 | \( 1 - 72.4iT - 1.33e3T^{2} \) |
| 13 | \( 1 - 50.7iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 60.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 33.8iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 116.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 13.1iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 250.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 92.7iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 69.1T + 6.89e4T^{2} \) |
| 43 | \( 1 - 69.6iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 346.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 585. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 66.1iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 492. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 543. iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 365.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 374.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 670.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 595. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 1.03e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 218.T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.639653033916567174488846561233, −8.734616664332026526785982283982, −7.54005221899838013245685373643, −7.17328298725753535607104001720, −6.57235464867312573158381614944, −5.39252812304442911460188923447, −4.46465949250789413520861282403, −3.35969749035689206787001635257, −2.21038186443268589270622727610, −1.51376594263855398858736005683,
0.40860185669227677756603194008, 1.20911046786029990205897541867, 2.98036916461063941588924319760, 3.62502650951338126484028111795, 4.94477461824578381953513203218, 5.36734108497429977835857882822, 6.16719014263078314467245894623, 7.58335556545201370265986916267, 8.362599375544047976033886118499, 8.832999577482346417785807433151