Properties

Label 1344.4.c.d
Level $1344$
Weight $4$
Character orbit 1344.c
Analytic conductor $79.299$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,4,Mod(673,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.673");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(79.2985670477\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 722x^{3} + 11881x^{2} + 54936x + 127008 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 \beta_1 q^{3} + ( - \beta_{3} + \beta_1) q^{5} + 7 q^{7} - 9 q^{9} + ( - \beta_{5} - 2 \beta_{3} + 9 \beta_1) q^{11} + ( - \beta_{5} - \beta_{3} - 2 \beta_1) q^{13} + ( - 3 \beta_{2} + 3) q^{15}+ \cdots + (9 \beta_{5} + 18 \beta_{3} - 81 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 42 q^{7} - 54 q^{9} + 24 q^{15} - 16 q^{17} - 60 q^{23} - 138 q^{25} - 552 q^{31} + 168 q^{33} - 36 q^{39} - 272 q^{41} - 1576 q^{47} + 294 q^{49} - 1632 q^{55} + 432 q^{57} - 378 q^{63} - 664 q^{65}+ \cdots + 1548 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} + 722x^{3} + 11881x^{2} + 54936x + 127008 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -5869\nu^{5} + 25724\nu^{4} - 85196\nu^{3} - 2684972\nu^{2} - 64680643\nu - 172672164 ) / 142698276 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -111\nu^{5} + 583\nu^{4} - 12321\nu^{3} - 40071\nu^{2} - 55944\nu - 7048478 ) / 1132526 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 19855\nu^{5} - 99182\nu^{4} + 1637642\nu^{3} + 7733918\nu^{2} + 357126139\nu + 918082116 ) / 142698276 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -1721\nu^{5} + 29445\nu^{4} - 191031\nu^{3} - 621281\nu^{2} - 867384\nu + 78246822 ) / 1132526 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -233885\nu^{5} + 988654\nu^{4} + 653126\nu^{3} - 206179030\nu^{2} - 2162653733\nu - 5879361852 ) / 47566092 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + 9\beta_{3} + 150\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{5} + \beta_{4} + 118\beta_{3} - 118\beta_{2} + 763\beta _1 - 763 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 111\beta_{4} - 1721\beta_{2} - 18380 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 472\beta_{5} + 472\beta_{4} - 16851\beta_{3} - 16851\beta_{2} - 139347\beta _1 - 139347 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1344\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(449\) \(577\) \(1093\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
673.1
8.80977 + 8.80977i
−2.93235 2.93235i
−4.87742 4.87742i
−4.87742 + 4.87742i
−2.93235 + 2.93235i
8.80977 8.80977i
0 3.00000i 0 15.6195i 0 7.00000 0 −9.00000 0
673.2 0 3.00000i 0 7.86469i 0 7.00000 0 −9.00000 0
673.3 0 3.00000i 0 11.7548i 0 7.00000 0 −9.00000 0
673.4 0 3.00000i 0 11.7548i 0 7.00000 0 −9.00000 0
673.5 0 3.00000i 0 7.86469i 0 7.00000 0 −9.00000 0
673.6 0 3.00000i 0 15.6195i 0 7.00000 0 −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 673.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.c.d yes 6
4.b odd 2 1 1344.4.c.a 6
8.b even 2 1 inner 1344.4.c.d yes 6
8.d odd 2 1 1344.4.c.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1344.4.c.a 6 4.b odd 2 1
1344.4.c.a 6 8.d odd 2 1
1344.4.c.d yes 6 1.a even 1 1 trivial
1344.4.c.d yes 6 8.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1344, [\chi])\):

\( T_{5}^{6} + 444T_{5}^{4} + 57348T_{5}^{2} + 2085136 \) Copy content Toggle raw display
\( T_{23}^{3} + 30T_{23}^{2} - 21186T_{23} + 470448 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + 444 T^{4} + \cdots + 2085136 \) Copy content Toggle raw display
$7$ \( (T - 7)^{6} \) Copy content Toggle raw display
$11$ \( T^{6} + 6396 T^{4} + \cdots + 906973456 \) Copy content Toggle raw display
$13$ \( T^{6} + 5028 T^{4} + \cdots + 369869824 \) Copy content Toggle raw display
$17$ \( (T^{3} + 8 T^{2} + \cdots - 66092)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 71892624384 \) Copy content Toggle raw display
$23$ \( (T^{3} + 30 T^{2} + \cdots + 470448)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} + 6456 T^{4} + \cdots + 97140736 \) Copy content Toggle raw display
$31$ \( (T^{3} + 276 T^{2} + \cdots - 913888)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 9816 T^{4} + \cdots + 488233216 \) Copy content Toggle raw display
$41$ \( (T^{3} + 136 T^{2} + \cdots - 9550804)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 4829129310784 \) Copy content Toggle raw display
$47$ \( (T^{3} + 788 T^{2} + \cdots + 13844416)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 924071477319936 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 4716055035904 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 268125124864 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 15\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( (T^{3} + 1274 T^{2} + \cdots - 4238528)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 222 T^{2} + \cdots + 226444392)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 1764 T^{2} + \cdots + 157706752)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 964272413085696 \) Copy content Toggle raw display
$89$ \( (T^{3} - 8 T^{2} + \cdots + 690068)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 774 T^{2} + \cdots - 107008376)^{2} \) Copy content Toggle raw display
show more
show less