L(s) = 1 | + (−0.323 + 0.323i)2-s + 1.79i·4-s + (1.22 − 1.87i)5-s + (1.79 + 1.79i)7-s + (−1.22 − 1.22i)8-s + (0.208 + 0.999i)10-s + 5.54i·11-s + (1.79 − 1.79i)13-s − 1.15·14-s − 2.79·16-s + (1.87 − 1.87i)17-s − 3i·19-s + (3.35 + 2.19i)20-s + (−1.79 − 1.79i)22-s + (−4.32 − 4.32i)23-s + ⋯ |
L(s) = 1 | + (−0.228 + 0.228i)2-s + 0.895i·4-s + (0.547 − 0.836i)5-s + (0.677 + 0.677i)7-s + (−0.433 − 0.433i)8-s + (0.0660 + 0.316i)10-s + 1.67i·11-s + (0.496 − 0.496i)13-s − 0.309·14-s − 0.697·16-s + (0.453 − 0.453i)17-s − 0.688i·19-s + (0.749 + 0.490i)20-s + (−0.381 − 0.381i)22-s + (−0.900 − 0.900i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 135 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.725 - 0.688i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00486 + 0.400969i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00486 + 0.400969i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-1.22 + 1.87i)T \) |
good | 2 | \( 1 + (0.323 - 0.323i)T - 2iT^{2} \) |
| 7 | \( 1 + (-1.79 - 1.79i)T + 7iT^{2} \) |
| 11 | \( 1 - 5.54iT - 11T^{2} \) |
| 13 | \( 1 + (-1.79 + 1.79i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.87 + 1.87i)T - 17iT^{2} \) |
| 19 | \( 1 + 3iT - 19T^{2} \) |
| 23 | \( 1 + (4.32 + 4.32i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.38T + 29T^{2} \) |
| 31 | \( 1 + T + 31T^{2} \) |
| 37 | \( 1 + (5 + 5i)T + 37iT^{2} \) |
| 41 | \( 1 - 5.54iT - 41T^{2} \) |
| 43 | \( 1 + (-3.20 + 3.20i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.646 + 0.646i)T - 47iT^{2} \) |
| 53 | \( 1 + (-0.0674 - 0.0674i)T + 53iT^{2} \) |
| 59 | \( 1 - 4.38T + 59T^{2} \) |
| 61 | \( 1 + T + 61T^{2} \) |
| 67 | \( 1 + (-8.58 - 8.58i)T + 67iT^{2} \) |
| 71 | \( 1 - 5.54iT - 71T^{2} \) |
| 73 | \( 1 + (10.3 - 10.3i)T - 73iT^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 + (8.70 + 8.70i)T + 83iT^{2} \) |
| 89 | \( 1 - 16.6T + 89T^{2} \) |
| 97 | \( 1 + (3.58 + 3.58i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.03854446736934493498721445837, −12.46846489737220114243643761998, −11.61609993281928945235842966793, −9.997577919320859843866702623095, −9.008138393135755701146257930127, −8.181330501512705467690782992552, −7.07657552102532176137596332465, −5.49023505411011861881754541121, −4.31495365375244826910554547607, −2.23795266877774120938677657403,
1.61713194195920318200066816582, 3.59922831176414174465889338660, 5.56147505710240121737893587048, 6.31806941393255689084706515881, 7.83470481704393807457943601585, 9.102594990326131027285332293248, 10.28138605531598066743605464214, 10.90185203004764225257335910539, 11.64145880607481508308750588512, 13.61489495128882556220892525395