L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (1.22 − 1.22i)7-s + (0.707 − 0.707i)8-s − 1.73·14-s − 1.00·16-s + (−4.24 − 4.24i)17-s + i·19-s + (4.24 − 4.24i)23-s + (1.22 + 1.22i)28-s − 10.3·29-s + 7·31-s + (0.707 + 0.707i)32-s + 6i·34-s + (6.12 − 6.12i)37-s + (0.707 − 0.707i)38-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.462 − 0.462i)7-s + (0.250 − 0.250i)8-s − 0.462·14-s − 0.250·16-s + (−1.02 − 1.02i)17-s + 0.229i·19-s + (0.884 − 0.884i)23-s + (0.231 + 0.231i)28-s − 1.92·29-s + 1.25·31-s + (0.125 + 0.125i)32-s + 1.02i·34-s + (1.00 − 1.00i)37-s + (0.114 − 0.114i)38-s + ⋯ |
Λ(s)=(=(1350s/2ΓC(s)L(s)(−0.437+0.899i)Λ(2−s)
Λ(s)=(=(1350s/2ΓC(s+1/2)L(s)(−0.437+0.899i)Λ(1−s)
Degree: |
2 |
Conductor: |
1350
= 2⋅33⋅52
|
Sign: |
−0.437+0.899i
|
Analytic conductor: |
10.7798 |
Root analytic conductor: |
3.28326 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1350(593,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1350, ( :1/2), −0.437+0.899i)
|
Particular Values
L(1) |
≈ |
1.044265200 |
L(21) |
≈ |
1.044265200 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707+0.707i)T |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1+(−1.22+1.22i)T−7iT2 |
| 11 | 1−11T2 |
| 13 | 1+13iT2 |
| 17 | 1+(4.24+4.24i)T+17iT2 |
| 19 | 1−iT−19T2 |
| 23 | 1+(−4.24+4.24i)T−23iT2 |
| 29 | 1+10.3T+29T2 |
| 31 | 1−7T+31T2 |
| 37 | 1+(−6.12+6.12i)T−37iT2 |
| 41 | 1−41T2 |
| 43 | 1+(1.22+1.22i)T+43iT2 |
| 47 | 1+47iT2 |
| 53 | 1+(−8.48+8.48i)T−53iT2 |
| 59 | 1+10.3T+59T2 |
| 61 | 1−5T+61T2 |
| 67 | 1+(7.34−7.34i)T−67iT2 |
| 71 | 1+10.3iT−71T2 |
| 73 | 1+(8.57+8.57i)T+73iT2 |
| 79 | 1+13iT−79T2 |
| 83 | 1+(−4.24+4.24i)T−83iT2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1+(−6.12+6.12i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.265976322787672410733787142119, −8.764304954639611809708428761377, −7.70581614263989836076679329103, −7.17324719902625095893494538193, −6.14045086861577677841951339377, −4.88956214321609264556287449138, −4.17806872238576729423685088755, −2.97404724489201598206639185458, −1.94094925174734476547812087214, −0.53038890879752740608558706836,
1.38822748557989546825409967720, 2.55043497088047339196635734269, 3.98166576338394932210969768525, 4.98142418280382511875373978787, 5.82867178915113534617917488329, 6.63014424433102306854535550566, 7.52826539603289712069000422792, 8.288518530224666217556067836335, 8.981745418593224473826828974507, 9.642730809841484461149969709354