L(s) = 1 | + (−0.707 − 0.707i)2-s + 1.00i·4-s + (1.22 − 1.22i)7-s + (0.707 − 0.707i)8-s − 1.73·14-s − 1.00·16-s + (−4.24 − 4.24i)17-s + i·19-s + (4.24 − 4.24i)23-s + (1.22 + 1.22i)28-s − 10.3·29-s + 7·31-s + (0.707 + 0.707i)32-s + 6i·34-s + (6.12 − 6.12i)37-s + (0.707 − 0.707i)38-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.462 − 0.462i)7-s + (0.250 − 0.250i)8-s − 0.462·14-s − 0.250·16-s + (−1.02 − 1.02i)17-s + 0.229i·19-s + (0.884 − 0.884i)23-s + (0.231 + 0.231i)28-s − 1.92·29-s + 1.25·31-s + (0.125 + 0.125i)32-s + 1.02i·34-s + (1.00 − 1.00i)37-s + (0.114 − 0.114i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.437 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.044265200\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.044265200\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-1.22 + 1.22i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 + 13iT^{2} \) |
| 17 | \( 1 + (4.24 + 4.24i)T + 17iT^{2} \) |
| 19 | \( 1 - iT - 19T^{2} \) |
| 23 | \( 1 + (-4.24 + 4.24i)T - 23iT^{2} \) |
| 29 | \( 1 + 10.3T + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 + (-6.12 + 6.12i)T - 37iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 + (1.22 + 1.22i)T + 43iT^{2} \) |
| 47 | \( 1 + 47iT^{2} \) |
| 53 | \( 1 + (-8.48 + 8.48i)T - 53iT^{2} \) |
| 59 | \( 1 + 10.3T + 59T^{2} \) |
| 61 | \( 1 - 5T + 61T^{2} \) |
| 67 | \( 1 + (7.34 - 7.34i)T - 67iT^{2} \) |
| 71 | \( 1 + 10.3iT - 71T^{2} \) |
| 73 | \( 1 + (8.57 + 8.57i)T + 73iT^{2} \) |
| 79 | \( 1 + 13iT - 79T^{2} \) |
| 83 | \( 1 + (-4.24 + 4.24i)T - 83iT^{2} \) |
| 89 | \( 1 - 10.3T + 89T^{2} \) |
| 97 | \( 1 + (-6.12 + 6.12i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.265976322787672410733787142119, −8.764304954639611809708428761377, −7.70581614263989836076679329103, −7.17324719902625095893494538193, −6.14045086861577677841951339377, −4.88956214321609264556287449138, −4.17806872238576729423685088755, −2.97404724489201598206639185458, −1.94094925174734476547812087214, −0.53038890879752740608558706836,
1.38822748557989546825409967720, 2.55043497088047339196635734269, 3.98166576338394932210969768525, 4.98142418280382511875373978787, 5.82867178915113534617917488329, 6.63014424433102306854535550566, 7.52826539603289712069000422792, 8.288518530224666217556067836335, 8.981745418593224473826828974507, 9.642730809841484461149969709354