Properties

Label 1350.2.f.d
Level 13501350
Weight 22
Character orbit 1350.f
Analytic conductor 10.78010.780
Analytic rank 00
Dimension 88
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1350,2,Mod(107,1350)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1350, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1350.107");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1350=23352 1350 = 2 \cdot 3^{3} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1350.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.779804272910.7798042729
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(i)\Q(i)
Coefficient field: Q(ζ24)\Q(\zeta_{24})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+β3q4+β7q7+β5q8+β6q14q166β1q17+β3q19+6β5q23β2q28+6β6q29+7q31++4β5q98+O(q100) q - \beta_1 q^{2} + \beta_{3} q^{4} + \beta_{7} q^{7} + \beta_{5} q^{8} + \beta_{6} q^{14} - q^{16} - 6 \beta_1 q^{17} + \beta_{3} q^{19} + 6 \beta_{5} q^{23} - \beta_{2} q^{28} + 6 \beta_{6} q^{29} + 7 q^{31}+ \cdots + 4 \beta_{5} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q8q16+56q3148q46+40q618q76+O(q100) 8 q - 8 q^{16} + 56 q^{31} - 48 q^{46} + 40 q^{61} - 8 q^{76}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ243 \zeta_{24}^{3} Copy content Toggle raw display
β2\beta_{2}== ζ245+ζ24 \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β3\beta_{3}== ζ246 \zeta_{24}^{6} Copy content Toggle raw display
β4\beta_{4}== 2ζ2441 2\zeta_{24}^{4} - 1 Copy content Toggle raw display
β5\beta_{5}== ζ245+ζ24 -\zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ246+2ζ242 -\zeta_{24}^{6} + 2\zeta_{24}^{2} Copy content Toggle raw display
β7\beta_{7}== 2ζ247ζ243 2\zeta_{24}^{7} - \zeta_{24}^{3} Copy content Toggle raw display
ζ24\zeta_{24}== (β5+β2)/2 ( \beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β6+β3)/2 ( \beta_{6} + \beta_{3} ) / 2 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== β1 \beta_1 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== (β4+1)/2 ( \beta_{4} + 1 ) / 2 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β5+β2)/2 ( -\beta_{5} + \beta_{2} ) / 2 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== β3 \beta_{3} Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7+β1)/2 ( \beta_{7} + \beta_1 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1350Z)×\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times.

nn 10011001 10271027
χ(n)\chi(n) 1-1 β3-\beta_{3}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
107.1
0.965926 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 + 0.258819i
−0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 0.258819i
−0.707107 + 0.707107i 0 1.00000i 0 0 −1.22474 1.22474i 0.707107 + 0.707107i 0 0
107.2 −0.707107 + 0.707107i 0 1.00000i 0 0 1.22474 + 1.22474i 0.707107 + 0.707107i 0 0
107.3 0.707107 0.707107i 0 1.00000i 0 0 −1.22474 1.22474i −0.707107 0.707107i 0 0
107.4 0.707107 0.707107i 0 1.00000i 0 0 1.22474 + 1.22474i −0.707107 0.707107i 0 0
593.1 −0.707107 0.707107i 0 1.00000i 0 0 −1.22474 + 1.22474i 0.707107 0.707107i 0 0
593.2 −0.707107 0.707107i 0 1.00000i 0 0 1.22474 1.22474i 0.707107 0.707107i 0 0
593.3 0.707107 + 0.707107i 0 1.00000i 0 0 −1.22474 + 1.22474i −0.707107 + 0.707107i 0 0
593.4 0.707107 + 0.707107i 0 1.00000i 0 0 1.22474 1.22474i −0.707107 + 0.707107i 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 107.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
5.c odd 4 2 inner
15.d odd 2 1 inner
15.e even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1350.2.f.d 8
3.b odd 2 1 inner 1350.2.f.d 8
5.b even 2 1 inner 1350.2.f.d 8
5.c odd 4 2 inner 1350.2.f.d 8
15.d odd 2 1 inner 1350.2.f.d 8
15.e even 4 2 inner 1350.2.f.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1350.2.f.d 8 1.a even 1 1 trivial
1350.2.f.d 8 3.b odd 2 1 inner
1350.2.f.d 8 5.b even 2 1 inner
1350.2.f.d 8 5.c odd 4 2 inner
1350.2.f.d 8 15.d odd 2 1 inner
1350.2.f.d 8 15.e even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1350,[χ])S_{2}^{\mathrm{new}}(1350, [\chi]):

T74+9 T_{7}^{4} + 9 Copy content Toggle raw display
T292108 T_{29}^{2} - 108 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4+1)2 (T^{4} + 1)^{2} Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 (T4+9)2 (T^{4} + 9)^{2} Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 (T4+1296)2 (T^{4} + 1296)^{2} Copy content Toggle raw display
1919 (T2+1)4 (T^{2} + 1)^{4} Copy content Toggle raw display
2323 (T4+1296)2 (T^{4} + 1296)^{2} Copy content Toggle raw display
2929 (T2108)4 (T^{2} - 108)^{4} Copy content Toggle raw display
3131 (T7)8 (T - 7)^{8} Copy content Toggle raw display
3737 (T4+5625)2 (T^{4} + 5625)^{2} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 (T4+9)2 (T^{4} + 9)^{2} Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 (T4+20736)2 (T^{4} + 20736)^{2} Copy content Toggle raw display
5959 (T2108)4 (T^{2} - 108)^{4} Copy content Toggle raw display
6161 (T5)8 (T - 5)^{8} Copy content Toggle raw display
6767 (T4+11664)2 (T^{4} + 11664)^{2} Copy content Toggle raw display
7171 (T2+108)4 (T^{2} + 108)^{4} Copy content Toggle raw display
7373 (T4+21609)2 (T^{4} + 21609)^{2} Copy content Toggle raw display
7979 (T2+169)4 (T^{2} + 169)^{4} Copy content Toggle raw display
8383 (T4+1296)2 (T^{4} + 1296)^{2} Copy content Toggle raw display
8989 (T2108)4 (T^{2} - 108)^{4} Copy content Toggle raw display
9797 (T4+5625)2 (T^{4} + 5625)^{2} Copy content Toggle raw display
show more
show less