Properties

Label 2-1352-13.4-c1-0-23
Degree $2$
Conductor $1352$
Sign $0.0771 + 0.997i$
Analytic cond. $10.7957$
Root an. cond. $3.28569$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)3-s i·5-s + (−4.33 + 2.5i)7-s + (1 + 1.73i)9-s + (−1.73 − i)11-s + (0.866 + 0.5i)15-s + (−1.5 − 2.59i)17-s + (−1.73 + i)19-s − 5i·21-s + (2 − 3.46i)23-s + 4·25-s − 5·27-s + (3 − 5.19i)29-s − 4i·31-s + (1.73 − 0.999i)33-s + ⋯
L(s)  = 1  + (−0.288 + 0.499i)3-s − 0.447i·5-s + (−1.63 + 0.944i)7-s + (0.333 + 0.577i)9-s + (−0.522 − 0.301i)11-s + (0.223 + 0.129i)15-s + (−0.363 − 0.630i)17-s + (−0.397 + 0.229i)19-s − 1.09i·21-s + (0.417 − 0.722i)23-s + 0.800·25-s − 0.962·27-s + (0.557 − 0.964i)29-s − 0.718i·31-s + (0.301 − 0.174i)33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0771 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0771 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1352\)    =    \(2^{3} \cdot 13^{2}\)
Sign: $0.0771 + 0.997i$
Analytic conductor: \(10.7957\)
Root analytic conductor: \(3.28569\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1352} (1161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1352,\ (\ :1/2),\ 0.0771 + 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5324249698\)
\(L(\frac12)\) \(\approx\) \(0.5324249698\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 + (0.5 - 0.866i)T + (-1.5 - 2.59i)T^{2} \)
5 \( 1 + iT - 5T^{2} \)
7 \( 1 + (4.33 - 2.5i)T + (3.5 - 6.06i)T^{2} \)
11 \( 1 + (1.73 + i)T + (5.5 + 9.52i)T^{2} \)
17 \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (1.73 - i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + 4iT - 31T^{2} \)
37 \( 1 + (-9.52 - 5.5i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + (6.92 + 4i)T + (20.5 + 35.5i)T^{2} \)
43 \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 9iT - 47T^{2} \)
53 \( 1 + 12T + 53T^{2} \)
59 \( 1 + (5.19 - 3i)T + (29.5 - 51.0i)T^{2} \)
61 \( 1 + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (5.19 + 3i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-6.06 + 3.5i)T + (35.5 - 61.4i)T^{2} \)
73 \( 1 - 2iT - 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 + 16iT - 83T^{2} \)
89 \( 1 + (8.66 + 5i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (8.66 - 5i)T + (48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.500472046488218777798812338431, −8.766173611373717048673526967359, −7.931905485928080433796206254554, −6.72974846728988621204162290515, −6.08462361058427509271749838180, −5.17760118262561966666870864745, −4.42579875972422036329490191242, −3.17015773683181319454697057457, −2.33340675723721922095429587519, −0.24680720501100630275765823600, 1.17869688948972168068245284548, 2.85385374284023703585571842619, 3.58903033016519027000351151858, 4.63167397604240893917344727222, 6.00528044251770672111656043103, 6.70025017608567996738905910853, 7.01667040069550958593972002565, 7.976690318795666859585653622294, 9.264591493723696602939310583613, 9.740893962891620478694304481628

Graph of the $Z$-function along the critical line