L(s) = 1 | + (−0.5 + 0.866i)3-s − i·5-s + (−4.33 + 2.5i)7-s + (1 + 1.73i)9-s + (−1.73 − i)11-s + (0.866 + 0.5i)15-s + (−1.5 − 2.59i)17-s + (−1.73 + i)19-s − 5i·21-s + (2 − 3.46i)23-s + 4·25-s − 5·27-s + (3 − 5.19i)29-s − 4i·31-s + (1.73 − 0.999i)33-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s − 0.447i·5-s + (−1.63 + 0.944i)7-s + (0.333 + 0.577i)9-s + (−0.522 − 0.301i)11-s + (0.223 + 0.129i)15-s + (−0.363 − 0.630i)17-s + (−0.397 + 0.229i)19-s − 1.09i·21-s + (0.417 − 0.722i)23-s + 0.800·25-s − 0.962·27-s + (0.557 − 0.964i)29-s − 0.718i·31-s + (0.301 − 0.174i)33-s + ⋯ |
Λ(s)=(=(1352s/2ΓC(s)L(s)(0.0771+0.997i)Λ(2−s)
Λ(s)=(=(1352s/2ΓC(s+1/2)L(s)(0.0771+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
1352
= 23⋅132
|
Sign: |
0.0771+0.997i
|
Analytic conductor: |
10.7957 |
Root analytic conductor: |
3.28569 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1352(1161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1352, ( :1/2), 0.0771+0.997i)
|
Particular Values
L(1) |
≈ |
0.5324249698 |
L(21) |
≈ |
0.5324249698 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+(0.5−0.866i)T+(−1.5−2.59i)T2 |
| 5 | 1+iT−5T2 |
| 7 | 1+(4.33−2.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(1.73+i)T+(5.5+9.52i)T2 |
| 17 | 1+(1.5+2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(1.73−i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2+3.46i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3+5.19i)T+(−14.5−25.1i)T2 |
| 31 | 1+4iT−31T2 |
| 37 | 1+(−9.52−5.5i)T+(18.5+32.0i)T2 |
| 41 | 1+(6.92+4i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.5+0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1+9iT−47T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(5.19−3i)T+(29.5−51.0i)T2 |
| 61 | 1+(−30.5+52.8i)T2 |
| 67 | 1+(5.19+3i)T+(33.5+58.0i)T2 |
| 71 | 1+(−6.06+3.5i)T+(35.5−61.4i)T2 |
| 73 | 1−2iT−73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1+16iT−83T2 |
| 89 | 1+(8.66+5i)T+(44.5+77.0i)T2 |
| 97 | 1+(8.66−5i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.500472046488218777798812338431, −8.766173611373717048673526967359, −7.931905485928080433796206254554, −6.72974846728988621204162290515, −6.08462361058427509271749838180, −5.17760118262561966666870864745, −4.42579875972422036329490191242, −3.17015773683181319454697057457, −2.33340675723721922095429587519, −0.24680720501100630275765823600,
1.17869688948972168068245284548, 2.85385374284023703585571842619, 3.58903033016519027000351151858, 4.63167397604240893917344727222, 6.00528044251770672111656043103, 6.70025017608567996738905910853, 7.01667040069550958593972002565, 7.976690318795666859585653622294, 9.264591493723696602939310583613, 9.740893962891620478694304481628