Properties

Label 1352.2.o.a
Level 13521352
Weight 22
Character orbit 1352.o
Analytic conductor 10.79610.796
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1352,2,Mod(361,1352)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1352, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1352.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1352=23132 1352 = 2^{3} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1352.o (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 10.795774353310.7957743533
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ12\zeta_{12}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ1221)q3+ζ123q5+(5ζ123+5ζ12)q7+2ζ122q9+2ζ12q11ζ12q153ζ122q17+(2ζ123+2ζ12)q19++4ζ123q99+O(q100) q + (\zeta_{12}^{2} - 1) q^{3} + \zeta_{12}^{3} q^{5} + ( - 5 \zeta_{12}^{3} + 5 \zeta_{12}) q^{7} + 2 \zeta_{12}^{2} q^{9} + 2 \zeta_{12} q^{11} - \zeta_{12} q^{15} - 3 \zeta_{12}^{2} q^{17} + ( - 2 \zeta_{12}^{3} + 2 \zeta_{12}) q^{19} + \cdots + 4 \zeta_{12}^{3} q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q3+4q96q17+8q23+16q2520q27+12q29+10q352q43+36q49+12q5148q534q55+8q698q75+40q77+48q792q81++4q95+O(q100) 4 q - 2 q^{3} + 4 q^{9} - 6 q^{17} + 8 q^{23} + 16 q^{25} - 20 q^{27} + 12 q^{29} + 10 q^{35} - 2 q^{43} + 36 q^{49} + 12 q^{51} - 48 q^{53} - 4 q^{55} + 8 q^{69} - 8 q^{75} + 40 q^{77} + 48 q^{79} - 2 q^{81}+ \cdots + 4 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1352Z)×\left(\mathbb{Z}/1352\mathbb{Z}\right)^\times.

nn 677677 10151015 11851185
χ(n)\chi(n) 11 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
361.1
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
0 −0.500000 0.866025i 0 1.00000i 0 4.33013 + 2.50000i 0 1.00000 1.73205i 0
361.2 0 −0.500000 0.866025i 0 1.00000i 0 −4.33013 2.50000i 0 1.00000 1.73205i 0
1161.1 0 −0.500000 + 0.866025i 0 1.00000i 0 −4.33013 + 2.50000i 0 1.00000 + 1.73205i 0
1161.2 0 −0.500000 + 0.866025i 0 1.00000i 0 4.33013 2.50000i 0 1.00000 + 1.73205i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner
13.c even 3 1 inner
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1352.2.o.a 4
13.b even 2 1 inner 1352.2.o.a 4
13.c even 3 1 1352.2.f.b 2
13.c even 3 1 inner 1352.2.o.a 4
13.d odd 4 1 1352.2.i.b 2
13.d odd 4 1 1352.2.i.c 2
13.e even 6 1 1352.2.f.b 2
13.e even 6 1 inner 1352.2.o.a 4
13.f odd 12 1 104.2.a.a 1
13.f odd 12 1 1352.2.a.b 1
13.f odd 12 1 1352.2.i.b 2
13.f odd 12 1 1352.2.i.c 2
39.k even 12 1 936.2.a.f 1
52.i odd 6 1 2704.2.f.e 2
52.j odd 6 1 2704.2.f.e 2
52.l even 12 1 208.2.a.b 1
52.l even 12 1 2704.2.a.d 1
65.o even 12 1 2600.2.d.f 2
65.s odd 12 1 2600.2.a.e 1
65.t even 12 1 2600.2.d.f 2
91.bc even 12 1 5096.2.a.c 1
104.u even 12 1 832.2.a.h 1
104.x odd 12 1 832.2.a.c 1
156.v odd 12 1 1872.2.a.l 1
208.be odd 12 1 3328.2.b.a 2
208.bf even 12 1 3328.2.b.t 2
208.bk even 12 1 3328.2.b.t 2
208.bl odd 12 1 3328.2.b.a 2
260.bc even 12 1 5200.2.a.bb 1
312.bo even 12 1 7488.2.a.x 1
312.bq odd 12 1 7488.2.a.u 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.a.a 1 13.f odd 12 1
208.2.a.b 1 52.l even 12 1
832.2.a.c 1 104.x odd 12 1
832.2.a.h 1 104.u even 12 1
936.2.a.f 1 39.k even 12 1
1352.2.a.b 1 13.f odd 12 1
1352.2.f.b 2 13.c even 3 1
1352.2.f.b 2 13.e even 6 1
1352.2.i.b 2 13.d odd 4 1
1352.2.i.b 2 13.f odd 12 1
1352.2.i.c 2 13.d odd 4 1
1352.2.i.c 2 13.f odd 12 1
1352.2.o.a 4 1.a even 1 1 trivial
1352.2.o.a 4 13.b even 2 1 inner
1352.2.o.a 4 13.c even 3 1 inner
1352.2.o.a 4 13.e even 6 1 inner
1872.2.a.l 1 156.v odd 12 1
2600.2.a.e 1 65.s odd 12 1
2600.2.d.f 2 65.o even 12 1
2600.2.d.f 2 65.t even 12 1
2704.2.a.d 1 52.l even 12 1
2704.2.f.e 2 52.i odd 6 1
2704.2.f.e 2 52.j odd 6 1
3328.2.b.a 2 208.be odd 12 1
3328.2.b.a 2 208.bl odd 12 1
3328.2.b.t 2 208.bf even 12 1
3328.2.b.t 2 208.bk even 12 1
5096.2.a.c 1 91.bc even 12 1
5200.2.a.bb 1 260.bc even 12 1
7488.2.a.u 1 312.bq odd 12 1
7488.2.a.x 1 312.bo even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1352,[χ])S_{2}^{\mathrm{new}}(1352, [\chi]):

T32+T3+1 T_{3}^{2} + T_{3} + 1 Copy content Toggle raw display
T52+1 T_{5}^{2} + 1 Copy content Toggle raw display
T1144T112+16 T_{11}^{4} - 4T_{11}^{2} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
55 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
77 T425T2+625 T^{4} - 25T^{2} + 625 Copy content Toggle raw display
1111 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T2+3T+9)2 (T^{2} + 3 T + 9)^{2} Copy content Toggle raw display
1919 T44T2+16 T^{4} - 4T^{2} + 16 Copy content Toggle raw display
2323 (T24T+16)2 (T^{2} - 4 T + 16)^{2} Copy content Toggle raw display
2929 (T26T+36)2 (T^{2} - 6 T + 36)^{2} Copy content Toggle raw display
3131 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
3737 T4121T2+14641 T^{4} - 121 T^{2} + 14641 Copy content Toggle raw display
4141 T464T2+4096 T^{4} - 64T^{2} + 4096 Copy content Toggle raw display
4343 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
4747 (T2+81)2 (T^{2} + 81)^{2} Copy content Toggle raw display
5353 (T+12)4 (T + 12)^{4} Copy content Toggle raw display
5959 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 T436T2+1296 T^{4} - 36T^{2} + 1296 Copy content Toggle raw display
7171 T449T2+2401 T^{4} - 49T^{2} + 2401 Copy content Toggle raw display
7373 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
7979 (T12)4 (T - 12)^{4} Copy content Toggle raw display
8383 (T2+256)2 (T^{2} + 256)^{2} Copy content Toggle raw display
8989 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
9797 T4100T2+10000 T^{4} - 100 T^{2} + 10000 Copy content Toggle raw display
show more
show less