L(s) = 1 | + (−0.5 + 0.866i)3-s + i·5-s + (4.33 − 2.5i)7-s + (1 + 1.73i)9-s + (1.73 + i)11-s + (−0.866 − 0.5i)15-s + (−1.5 − 2.59i)17-s + (1.73 − i)19-s + 5i·21-s + (2 − 3.46i)23-s + 4·25-s − 5·27-s + (3 − 5.19i)29-s + 4i·31-s + (−1.73 + 0.999i)33-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + 0.447i·5-s + (1.63 − 0.944i)7-s + (0.333 + 0.577i)9-s + (0.522 + 0.301i)11-s + (−0.223 − 0.129i)15-s + (−0.363 − 0.630i)17-s + (0.397 − 0.229i)19-s + 1.09i·21-s + (0.417 − 0.722i)23-s + 0.800·25-s − 0.962·27-s + (0.557 − 0.964i)29-s + 0.718i·31-s + (−0.301 + 0.174i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1352 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.890 - 0.454i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.987037038\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.987037038\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + (0.5 - 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - iT - 5T^{2} \) |
| 7 | \( 1 + (-4.33 + 2.5i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.73 - i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 + 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.73 + i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4iT - 31T^{2} \) |
| 37 | \( 1 + (9.52 + 5.5i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6.92 - 4i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 9iT - 47T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (-5.19 + 3i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.19 - 3i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (6.06 - 3.5i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 2iT - 73T^{2} \) |
| 79 | \( 1 - 12T + 79T^{2} \) |
| 83 | \( 1 - 16iT - 83T^{2} \) |
| 89 | \( 1 + (-8.66 - 5i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-8.66 + 5i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.828396482441445330519962602808, −8.869595167360800162528981679554, −7.904633912967233763830519555072, −7.30807965185695685931448855228, −6.52494852169395697927909636057, −5.04189248480755930685929310993, −4.74713927219850947945654995439, −3.85725031879058091484370889271, −2.38939388308977133714152700041, −1.16326587446068106245435608355,
1.17454344268463747384849374258, 1.90922393461162340517652351645, 3.45704971422960311177900691371, 4.65142102538465163895346004213, 5.33756101457568575114146852483, 6.18719537761229473246899212685, 7.11584689957780865487201945311, 8.013229817688853375932979838742, 8.764269641057153908610105137540, 9.217208960672570198340339327360