L(s) = 1 | + (−0.5 + 0.866i)3-s + i·5-s + (4.33 − 2.5i)7-s + (1 + 1.73i)9-s + (1.73 + i)11-s + (−0.866 − 0.5i)15-s + (−1.5 − 2.59i)17-s + (1.73 − i)19-s + 5i·21-s + (2 − 3.46i)23-s + 4·25-s − 5·27-s + (3 − 5.19i)29-s + 4i·31-s + (−1.73 + 0.999i)33-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + 0.447i·5-s + (1.63 − 0.944i)7-s + (0.333 + 0.577i)9-s + (0.522 + 0.301i)11-s + (−0.223 − 0.129i)15-s + (−0.363 − 0.630i)17-s + (0.397 − 0.229i)19-s + 1.09i·21-s + (0.417 − 0.722i)23-s + 0.800·25-s − 0.962·27-s + (0.557 − 0.964i)29-s + 0.718i·31-s + (−0.301 + 0.174i)33-s + ⋯ |
Λ(s)=(=(1352s/2ΓC(s)L(s)(0.890−0.454i)Λ(2−s)
Λ(s)=(=(1352s/2ΓC(s+1/2)L(s)(0.890−0.454i)Λ(1−s)
Degree: |
2 |
Conductor: |
1352
= 23⋅132
|
Sign: |
0.890−0.454i
|
Analytic conductor: |
10.7957 |
Root analytic conductor: |
3.28569 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1352(1161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1352, ( :1/2), 0.890−0.454i)
|
Particular Values
L(1) |
≈ |
1.987037038 |
L(21) |
≈ |
1.987037038 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1+(0.5−0.866i)T+(−1.5−2.59i)T2 |
| 5 | 1−iT−5T2 |
| 7 | 1+(−4.33+2.5i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1.73−i)T+(5.5+9.52i)T2 |
| 17 | 1+(1.5+2.59i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−1.73+i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2+3.46i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3+5.19i)T+(−14.5−25.1i)T2 |
| 31 | 1−4iT−31T2 |
| 37 | 1+(9.52+5.5i)T+(18.5+32.0i)T2 |
| 41 | 1+(−6.92−4i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.5+0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1−9iT−47T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(−5.19+3i)T+(29.5−51.0i)T2 |
| 61 | 1+(−30.5+52.8i)T2 |
| 67 | 1+(−5.19−3i)T+(33.5+58.0i)T2 |
| 71 | 1+(6.06−3.5i)T+(35.5−61.4i)T2 |
| 73 | 1+2iT−73T2 |
| 79 | 1−12T+79T2 |
| 83 | 1−16iT−83T2 |
| 89 | 1+(−8.66−5i)T+(44.5+77.0i)T2 |
| 97 | 1+(−8.66+5i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.828396482441445330519962602808, −8.869595167360800162528981679554, −7.904633912967233763830519555072, −7.30807965185695685931448855228, −6.52494852169395697927909636057, −5.04189248480755930685929310993, −4.74713927219850947945654995439, −3.85725031879058091484370889271, −2.38939388308977133714152700041, −1.16326587446068106245435608355,
1.17454344268463747384849374258, 1.90922393461162340517652351645, 3.45704971422960311177900691371, 4.65142102538465163895346004213, 5.33756101457568575114146852483, 6.18719537761229473246899212685, 7.11584689957780865487201945311, 8.013229817688853375932979838742, 8.764269641057153908610105137540, 9.217208960672570198340339327360