Properties

Label 2600.2.d.f
Level $2600$
Weight $2$
Character orbit 2600.d
Analytic conductor $20.761$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(1249,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{3} - 5 i q^{7} + 2 q^{9} - 2 q^{11} - i q^{13} + 3 i q^{17} + 2 q^{19} + 5 q^{21} + 4 i q^{23} + 5 i q^{27} + 6 q^{29} - 4 q^{31} - 2 i q^{33} - 11 i q^{37} + q^{39} + 8 q^{41} - i q^{43} - 9 i q^{47} + \cdots - 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{9} - 4 q^{11} + 4 q^{19} + 10 q^{21} + 12 q^{29} - 8 q^{31} + 2 q^{39} + 16 q^{41} - 36 q^{49} - 6 q^{51} - 12 q^{59} - 8 q^{69} + 14 q^{71} - 24 q^{79} + 2 q^{81} + 20 q^{89} - 10 q^{91} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1249.1
1.00000i
1.00000i
0 1.00000i 0 0 0 5.00000i 0 2.00000 0
1249.2 0 1.00000i 0 0 0 5.00000i 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.2.d.f 2
5.b even 2 1 inner 2600.2.d.f 2
5.c odd 4 1 104.2.a.a 1
5.c odd 4 1 2600.2.a.e 1
15.e even 4 1 936.2.a.f 1
20.e even 4 1 208.2.a.b 1
20.e even 4 1 5200.2.a.bb 1
35.f even 4 1 5096.2.a.c 1
40.i odd 4 1 832.2.a.c 1
40.k even 4 1 832.2.a.h 1
60.l odd 4 1 1872.2.a.l 1
65.f even 4 1 1352.2.f.b 2
65.h odd 4 1 1352.2.a.b 1
65.k even 4 1 1352.2.f.b 2
65.o even 12 2 1352.2.o.a 4
65.q odd 12 2 1352.2.i.b 2
65.r odd 12 2 1352.2.i.c 2
65.t even 12 2 1352.2.o.a 4
80.i odd 4 1 3328.2.b.a 2
80.j even 4 1 3328.2.b.t 2
80.s even 4 1 3328.2.b.t 2
80.t odd 4 1 3328.2.b.a 2
120.q odd 4 1 7488.2.a.u 1
120.w even 4 1 7488.2.a.x 1
260.l odd 4 1 2704.2.f.e 2
260.p even 4 1 2704.2.a.d 1
260.s odd 4 1 2704.2.f.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
104.2.a.a 1 5.c odd 4 1
208.2.a.b 1 20.e even 4 1
832.2.a.c 1 40.i odd 4 1
832.2.a.h 1 40.k even 4 1
936.2.a.f 1 15.e even 4 1
1352.2.a.b 1 65.h odd 4 1
1352.2.f.b 2 65.f even 4 1
1352.2.f.b 2 65.k even 4 1
1352.2.i.b 2 65.q odd 12 2
1352.2.i.c 2 65.r odd 12 2
1352.2.o.a 4 65.o even 12 2
1352.2.o.a 4 65.t even 12 2
1872.2.a.l 1 60.l odd 4 1
2600.2.a.e 1 5.c odd 4 1
2600.2.d.f 2 1.a even 1 1 trivial
2600.2.d.f 2 5.b even 2 1 inner
2704.2.a.d 1 260.p even 4 1
2704.2.f.e 2 260.l odd 4 1
2704.2.f.e 2 260.s odd 4 1
3328.2.b.a 2 80.i odd 4 1
3328.2.b.a 2 80.t odd 4 1
3328.2.b.t 2 80.j even 4 1
3328.2.b.t 2 80.s even 4 1
5096.2.a.c 1 35.f even 4 1
5200.2.a.bb 1 20.e even 4 1
7488.2.a.u 1 120.q odd 4 1
7488.2.a.x 1 120.w even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2600, [\chi])\):

\( T_{3}^{2} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 25 \) Copy content Toggle raw display
\( T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 25 \) Copy content Toggle raw display
$11$ \( (T + 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1 \) Copy content Toggle raw display
$17$ \( T^{2} + 9 \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 16 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 121 \) Copy content Toggle raw display
$41$ \( (T - 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{2} + 81 \) Copy content Toggle raw display
$53$ \( T^{2} + 144 \) Copy content Toggle raw display
$59$ \( (T + 6)^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 36 \) Copy content Toggle raw display
$71$ \( (T - 7)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 256 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100 \) Copy content Toggle raw display
show more
show less