Properties

Label 2600.2.d
Level $2600$
Weight $2$
Character orbit 2600.d
Rep. character $\chi_{2600}(1249,\cdot)$
Character field $\Q$
Dimension $54$
Newform subspaces $16$
Sturm bound $840$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(840\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2600, [\chi])\).

Total New Old
Modular forms 444 54 390
Cusp forms 396 54 342
Eisenstein series 48 0 48

Trace form

\( 54 q - 46 q^{9} - 12 q^{11} + 12 q^{19} + 24 q^{21} - 24 q^{29} + 8 q^{31} + 8 q^{41} - 6 q^{49} + 24 q^{51} + 8 q^{59} - 24 q^{61} + 24 q^{69} - 16 q^{79} + 38 q^{81} - 32 q^{89} - 12 q^{91} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(2600, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
2600.2.d.a 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 2600.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 i q^{3}-2 i q^{7}-6 q^{9}-2 q^{11}+\cdots\)
2600.2.d.b 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 2600.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}+3 i q^{7}-q^{9}+q^{11}+i q^{13}+\cdots\)
2600.2.d.c 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 520.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-q^{9}+2 q^{11}+i q^{13}-2 i q^{17}+\cdots\)
2600.2.d.d 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 2600.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2 i q^{3}-3 i q^{7}-q^{9}+3 q^{11}+\cdots\)
2600.2.d.e 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 2600.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+2 q^{9}-2 q^{11}-i q^{13}-2 i q^{17}+\cdots\)
2600.2.d.f 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 104.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-5 i q^{7}+2 q^{9}-2 q^{11}+\cdots\)
2600.2.d.g 2600.d 5.b $2$ $20.761$ \(\Q(\sqrt{-1}) \) None 520.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3 q^{9}-4 q^{11}+i q^{13}-6 i q^{17}+\cdots\)
2600.2.d.h 2600.d 5.b $4$ $20.761$ \(\Q(i, \sqrt{6})\) None 520.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}-2\beta _{1}q^{7}-3q^{9}+(-2-\beta _{3})q^{11}+\cdots\)
2600.2.d.i 2600.d 5.b $4$ $20.761$ \(\Q(\zeta_{8})\) None 520.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+2\beta_1)q^{3}-2\beta_1 q^{7}+(4\beta_{3}-3)q^{9}+\cdots\)
2600.2.d.j 2600.d 5.b $4$ $20.761$ \(\Q(i, \sqrt{5})\) None 520.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{3}+(-3+2\beta _{3})q^{9}+\cdots\)
2600.2.d.k 2600.d 5.b $4$ $20.761$ \(\Q(i, \sqrt{17})\) None 104.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+\beta _{1}q^{7}+(-2+\beta _{3})q^{9}+(-2+\cdots)q^{11}+\cdots\)
2600.2.d.l 2600.d 5.b $4$ $20.761$ \(\Q(\zeta_{12})\) None 520.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{3}-2\beta_{2} q^{7}+(2\beta_{3}-1)q^{9}+\cdots\)
2600.2.d.m 2600.d 5.b $4$ $20.761$ \(\Q(\zeta_{12})\) None 520.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta_{2}+\beta_1)q^{3}+2\beta_{2} q^{7}+(2\beta_{3}-1)q^{9}+\cdots\)
2600.2.d.n 2600.d 5.b $4$ $20.761$ \(\Q(i, \sqrt{73})\) None 2600.2.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+2q^{9}+(-1+\beta _{3})q^{11}+\beta _{2}q^{13}+\cdots\)
2600.2.d.o 2600.d 5.b $4$ $20.761$ \(\Q(i, \sqrt{10})\) None 2600.2.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{2})q^{7}+3q^{9}+(3+\beta _{3})q^{11}+\cdots\)
2600.2.d.p 2600.d 5.b $8$ $20.761$ 8.0.\(\cdots\).21 None 2600.2.a.z \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{3}+(\beta _{2}-\beta _{7})q^{7}+(-2-\beta _{4}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2600, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2600, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(325, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(520, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(650, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1300, [\chi])\)\(^{\oplus 2}\)