L(s) = 1 | + (3.26 + 7.87i)3-s + (−8.68 + 3.59i)5-s + (3.82 + 1.58i)7-s + (−32.3 + 32.3i)9-s + (−0.766 + 1.85i)11-s + 58.7i·13-s + (−56.7 − 56.7i)15-s + (−29.9 − 63.3i)17-s + (−59.0 − 59.0i)19-s + 35.2i·21-s + (−15.0 + 36.2i)23-s + (−25.8 + 25.8i)25-s + (−147. − 61.1i)27-s + (145. − 60.4i)29-s + (46.0 + 111. i)31-s + ⋯ |
L(s) = 1 | + (0.628 + 1.51i)3-s + (−0.777 + 0.321i)5-s + (0.206 + 0.0855i)7-s + (−1.19 + 1.19i)9-s + (−0.0210 + 0.0507i)11-s + 1.25i·13-s + (−0.976 − 0.976i)15-s + (−0.427 − 0.904i)17-s + (−0.712 − 0.712i)19-s + 0.366i·21-s + (−0.136 + 0.329i)23-s + (−0.206 + 0.206i)25-s + (−1.05 − 0.435i)27-s + (0.934 − 0.386i)29-s + (0.266 + 0.643i)31-s + ⋯ |
Λ(s)=(=(136s/2ΓC(s)L(s)(−0.913−0.407i)Λ(4−s)
Λ(s)=(=(136s/2ΓC(s+3/2)L(s)(−0.913−0.407i)Λ(1−s)
Degree: |
2 |
Conductor: |
136
= 23⋅17
|
Sign: |
−0.913−0.407i
|
Analytic conductor: |
8.02425 |
Root analytic conductor: |
2.83271 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ136(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 136, ( :3/2), −0.913−0.407i)
|
Particular Values
L(2) |
≈ |
0.295511+1.38735i |
L(21) |
≈ |
0.295511+1.38735i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 17 | 1+(29.9+63.3i)T |
good | 3 | 1+(−3.26−7.87i)T+(−19.0+19.0i)T2 |
| 5 | 1+(8.68−3.59i)T+(88.3−88.3i)T2 |
| 7 | 1+(−3.82−1.58i)T+(242.+242.i)T2 |
| 11 | 1+(0.766−1.85i)T+(−941.−941.i)T2 |
| 13 | 1−58.7iT−2.19e3T2 |
| 19 | 1+(59.0+59.0i)T+6.85e3iT2 |
| 23 | 1+(15.0−36.2i)T+(−8.60e3−8.60e3i)T2 |
| 29 | 1+(−145.+60.4i)T+(1.72e4−1.72e4i)T2 |
| 31 | 1+(−46.0−111.i)T+(−2.10e4+2.10e4i)T2 |
| 37 | 1+(−129.−312.i)T+(−3.58e4+3.58e4i)T2 |
| 41 | 1+(−251.−104.i)T+(4.87e4+4.87e4i)T2 |
| 43 | 1+(169.−169.i)T−7.95e4iT2 |
| 47 | 1−150.iT−1.03e5T2 |
| 53 | 1+(−513.−513.i)T+1.48e5iT2 |
| 59 | 1+(−448.+448.i)T−2.05e5iT2 |
| 61 | 1+(−570.−236.i)T+(1.60e5+1.60e5i)T2 |
| 67 | 1−712.T+3.00e5T2 |
| 71 | 1+(317.+767.i)T+(−2.53e5+2.53e5i)T2 |
| 73 | 1+(471.−195.i)T+(2.75e5−2.75e5i)T2 |
| 79 | 1+(−114.+276.i)T+(−3.48e5−3.48e5i)T2 |
| 83 | 1+(434.+434.i)T+5.71e5iT2 |
| 89 | 1−1.26e3iT−7.04e5T2 |
| 97 | 1+(949.−393.i)T+(6.45e5−6.45e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.49422911048350686866362004181, −11.73079596486708792180761228411, −11.15699678286673566075917315710, −9.973419353813731543024883448846, −9.113571817396107189038443678301, −8.185542893088226274401437822714, −6.76924898903674223265353664726, −4.82766308002810200890720022481, −4.08627606781493887142545045052, −2.74772286507374031014954201841,
0.66275591091099976055946651244, 2.30345772826378292028453398866, 3.92869883159259643257289524300, 5.86832550367782564284911395474, 7.10379274189565165390859688796, 8.186283061269735516287268637117, 8.448796495828055524818462937597, 10.32029956276619069161231342688, 11.60590841908722389522372386687, 12.66172926560874339254450871621