Properties

Label 136.4.n.a.49.6
Level $136$
Weight $4$
Character 136.49
Analytic conductor $8.024$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [136,4,Mod(9,136)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(136, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("136.9");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 136.n (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.02425976078\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.6
Character \(\chi\) \(=\) 136.49
Dual form 136.4.n.a.25.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.26351 + 7.87882i) q^{3} +(-8.68823 + 3.59878i) q^{5} +(3.82290 + 1.58350i) q^{7} +(-32.3334 + 32.3334i) q^{9} +(-0.766960 + 1.85161i) q^{11} +58.7886i q^{13} +(-56.7083 - 56.7083i) q^{15} +(-29.9582 - 63.3680i) q^{17} +(-59.0083 - 59.0083i) q^{19} +35.2877i q^{21} +(-15.0348 + 36.2971i) q^{23} +(-25.8542 + 25.8542i) q^{25} +(-147.541 - 61.1136i) q^{27} +(145.881 - 60.4258i) q^{29} +(46.0004 + 111.055i) q^{31} -17.0915 q^{33} -38.9129 q^{35} +(129.260 + 312.061i) q^{37} +(-463.185 + 191.857i) q^{39} +(251.128 + 104.021i) q^{41} +(-169.157 + 169.157i) q^{43} +(164.559 - 397.281i) q^{45} +150.254i q^{47} +(-230.431 - 230.431i) q^{49} +(401.496 - 442.838i) q^{51} +(513.595 + 513.595i) q^{53} -18.8473i q^{55} +(272.341 - 657.490i) q^{57} +(448.507 - 448.507i) q^{59} +(570.476 + 236.299i) q^{61} +(-174.807 + 72.4075i) q^{63} +(-211.567 - 510.769i) q^{65} +712.549 q^{67} -335.045 q^{69} +(-317.730 - 767.069i) q^{71} +(-471.406 + 195.263i) q^{73} +(-288.077 - 119.325i) q^{75} +(-5.86403 + 5.86403i) q^{77} +(114.686 - 276.878i) q^{79} -127.286i q^{81} +(-434.347 - 434.347i) q^{83} +(488.332 + 442.743i) q^{85} +(952.167 + 952.167i) q^{87} +1268.61i q^{89} +(-93.0916 + 224.743i) q^{91} +(-724.857 + 724.857i) q^{93} +(725.035 + 300.319i) q^{95} +(-949.678 + 393.369i) q^{97} +(-35.0703 - 84.6671i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 28 q^{5} - 16 q^{9} + 140 q^{11} - 60 q^{15} - 164 q^{17} - 124 q^{19} - 72 q^{23} + 52 q^{25} - 360 q^{27} + 44 q^{29} - 120 q^{31} + 520 q^{33} + 512 q^{35} + 196 q^{37} - 232 q^{39} + 20 q^{41}+ \cdots + 5244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.26351 + 7.87882i 0.628064 + 1.51628i 0.842026 + 0.539438i \(0.181363\pi\)
−0.213962 + 0.976842i \(0.568637\pi\)
\(4\) 0 0
\(5\) −8.68823 + 3.59878i −0.777099 + 0.321885i −0.735744 0.677260i \(-0.763167\pi\)
−0.0413548 + 0.999145i \(0.513167\pi\)
\(6\) 0 0
\(7\) 3.82290 + 1.58350i 0.206417 + 0.0855009i 0.483497 0.875346i \(-0.339367\pi\)
−0.277079 + 0.960847i \(0.589367\pi\)
\(8\) 0 0
\(9\) −32.3334 + 32.3334i −1.19753 + 1.19753i
\(10\) 0 0
\(11\) −0.766960 + 1.85161i −0.0210225 + 0.0507527i −0.934042 0.357163i \(-0.883744\pi\)
0.913020 + 0.407915i \(0.133744\pi\)
\(12\) 0 0
\(13\) 58.7886i 1.25423i 0.778926 + 0.627116i \(0.215765\pi\)
−0.778926 + 0.627116i \(0.784235\pi\)
\(14\) 0 0
\(15\) −56.7083 56.7083i −0.976135 0.976135i
\(16\) 0 0
\(17\) −29.9582 63.3680i −0.427408 0.904059i
\(18\) 0 0
\(19\) −59.0083 59.0083i −0.712496 0.712496i 0.254561 0.967057i \(-0.418069\pi\)
−0.967057 + 0.254561i \(0.918069\pi\)
\(20\) 0 0
\(21\) 35.2877i 0.366686i
\(22\) 0 0
\(23\) −15.0348 + 36.2971i −0.136303 + 0.329064i −0.977262 0.212034i \(-0.931991\pi\)
0.840960 + 0.541098i \(0.181991\pi\)
\(24\) 0 0
\(25\) −25.8542 + 25.8542i −0.206834 + 0.206834i
\(26\) 0 0
\(27\) −147.541 61.1136i −1.05164 0.435605i
\(28\) 0 0
\(29\) 145.881 60.4258i 0.934116 0.386923i 0.136877 0.990588i \(-0.456293\pi\)
0.797238 + 0.603664i \(0.206293\pi\)
\(30\) 0 0
\(31\) 46.0004 + 111.055i 0.266513 + 0.643420i 0.999314 0.0370230i \(-0.0117875\pi\)
−0.732801 + 0.680443i \(0.761787\pi\)
\(32\) 0 0
\(33\) −17.0915 −0.0901588
\(34\) 0 0
\(35\) −38.9129 −0.187928
\(36\) 0 0
\(37\) 129.260 + 312.061i 0.574330 + 1.38655i 0.897837 + 0.440329i \(0.145138\pi\)
−0.323507 + 0.946226i \(0.604862\pi\)
\(38\) 0 0
\(39\) −463.185 + 191.857i −1.90177 + 0.787738i
\(40\) 0 0
\(41\) 251.128 + 104.021i 0.956575 + 0.396226i 0.805698 0.592326i \(-0.201790\pi\)
0.150877 + 0.988553i \(0.451790\pi\)
\(42\) 0 0
\(43\) −169.157 + 169.157i −0.599913 + 0.599913i −0.940289 0.340376i \(-0.889446\pi\)
0.340376 + 0.940289i \(0.389446\pi\)
\(44\) 0 0
\(45\) 164.559 397.281i 0.545134 1.31607i
\(46\) 0 0
\(47\) 150.254i 0.466314i 0.972439 + 0.233157i \(0.0749056\pi\)
−0.972439 + 0.233157i \(0.925094\pi\)
\(48\) 0 0
\(49\) −230.431 230.431i −0.671809 0.671809i
\(50\) 0 0
\(51\) 401.496 442.838i 1.10237 1.21588i
\(52\) 0 0
\(53\) 513.595 + 513.595i 1.33109 + 1.33109i 0.904397 + 0.426693i \(0.140321\pi\)
0.426693 + 0.904397i \(0.359679\pi\)
\(54\) 0 0
\(55\) 18.8473i 0.0462067i
\(56\) 0 0
\(57\) 272.341 657.490i 0.632850 1.52784i
\(58\) 0 0
\(59\) 448.507 448.507i 0.989671 0.989671i −0.0102762 0.999947i \(-0.503271\pi\)
0.999947 + 0.0102762i \(0.00327106\pi\)
\(60\) 0 0
\(61\) 570.476 + 236.299i 1.19741 + 0.495983i 0.890161 0.455647i \(-0.150592\pi\)
0.307248 + 0.951630i \(0.400592\pi\)
\(62\) 0 0
\(63\) −174.807 + 72.4075i −0.349582 + 0.144801i
\(64\) 0 0
\(65\) −211.567 510.769i −0.403718 0.974662i
\(66\) 0 0
\(67\) 712.549 1.29928 0.649640 0.760242i \(-0.274920\pi\)
0.649640 + 0.760242i \(0.274920\pi\)
\(68\) 0 0
\(69\) −335.045 −0.584560
\(70\) 0 0
\(71\) −317.730 767.069i −0.531094 1.28217i −0.930800 0.365530i \(-0.880888\pi\)
0.399706 0.916643i \(-0.369112\pi\)
\(72\) 0 0
\(73\) −471.406 + 195.263i −0.755807 + 0.313066i −0.727109 0.686522i \(-0.759136\pi\)
−0.0286987 + 0.999588i \(0.509136\pi\)
\(74\) 0 0
\(75\) −288.077 119.325i −0.443523 0.183713i
\(76\) 0 0
\(77\) −5.86403 + 5.86403i −0.00867881 + 0.00867881i
\(78\) 0 0
\(79\) 114.686 276.878i 0.163332 0.394319i −0.820931 0.571027i \(-0.806545\pi\)
0.984263 + 0.176709i \(0.0565451\pi\)
\(80\) 0 0
\(81\) 127.286i 0.174604i
\(82\) 0 0
\(83\) −434.347 434.347i −0.574407 0.574407i 0.358950 0.933357i \(-0.383135\pi\)
−0.933357 + 0.358950i \(0.883135\pi\)
\(84\) 0 0
\(85\) 488.332 + 442.743i 0.623141 + 0.564967i
\(86\) 0 0
\(87\) 952.167 + 952.167i 1.17337 + 1.17337i
\(88\) 0 0
\(89\) 1268.61i 1.51093i 0.655188 + 0.755466i \(0.272589\pi\)
−0.655188 + 0.755466i \(0.727411\pi\)
\(90\) 0 0
\(91\) −93.0916 + 224.743i −0.107238 + 0.258895i
\(92\) 0 0
\(93\) −724.857 + 724.857i −0.808217 + 0.808217i
\(94\) 0 0
\(95\) 725.035 + 300.319i 0.783022 + 0.324338i
\(96\) 0 0
\(97\) −949.678 + 393.369i −0.994074 + 0.411759i −0.819621 0.572906i \(-0.805816\pi\)
−0.174453 + 0.984665i \(0.555816\pi\)
\(98\) 0 0
\(99\) −35.0703 84.6671i −0.0356030 0.0859532i
\(100\) 0 0
\(101\) 53.5154 0.0527226 0.0263613 0.999652i \(-0.491608\pi\)
0.0263613 + 0.999652i \(0.491608\pi\)
\(102\) 0 0
\(103\) 1364.04 1.30488 0.652442 0.757839i \(-0.273745\pi\)
0.652442 + 0.757839i \(0.273745\pi\)
\(104\) 0 0
\(105\) −126.993 306.588i −0.118031 0.284952i
\(106\) 0 0
\(107\) −495.658 + 205.308i −0.447823 + 0.185494i −0.595186 0.803588i \(-0.702922\pi\)
0.147363 + 0.989083i \(0.452922\pi\)
\(108\) 0 0
\(109\) −1256.14 520.310i −1.10382 0.457217i −0.245015 0.969519i \(-0.578793\pi\)
−0.858805 + 0.512302i \(0.828793\pi\)
\(110\) 0 0
\(111\) −2036.83 + 2036.83i −1.74169 + 1.74169i
\(112\) 0 0
\(113\) 493.616 1191.69i 0.410933 0.992080i −0.573955 0.818887i \(-0.694591\pi\)
0.984888 0.173193i \(-0.0554085\pi\)
\(114\) 0 0
\(115\) 369.465i 0.299589i
\(116\) 0 0
\(117\) −1900.83 1900.83i −1.50198 1.50198i
\(118\) 0 0
\(119\) −14.1842 289.689i −0.0109266 0.223157i
\(120\) 0 0
\(121\) 938.319 + 938.319i 0.704973 + 0.704973i
\(122\) 0 0
\(123\) 2318.06i 1.69929i
\(124\) 0 0
\(125\) 581.432 1403.70i 0.416039 1.00441i
\(126\) 0 0
\(127\) −750.398 + 750.398i −0.524307 + 0.524307i −0.918869 0.394562i \(-0.870896\pi\)
0.394562 + 0.918869i \(0.370896\pi\)
\(128\) 0 0
\(129\) −1884.81 780.713i −1.28642 0.532852i
\(130\) 0 0
\(131\) 1.06830 0.442504i 0.000712501 0.000295128i −0.382327 0.924027i \(-0.624877\pi\)
0.383040 + 0.923732i \(0.374877\pi\)
\(132\) 0 0
\(133\) −132.143 319.022i −0.0861525 0.207991i
\(134\) 0 0
\(135\) 1501.81 0.957445
\(136\) 0 0
\(137\) 581.471 0.362616 0.181308 0.983426i \(-0.441967\pi\)
0.181308 + 0.983426i \(0.441967\pi\)
\(138\) 0 0
\(139\) −964.808 2329.25i −0.588733 1.42133i −0.884714 0.466134i \(-0.845646\pi\)
0.295981 0.955194i \(-0.404354\pi\)
\(140\) 0 0
\(141\) −1183.82 + 490.355i −0.707063 + 0.292875i
\(142\) 0 0
\(143\) −108.853 45.0885i −0.0636557 0.0263671i
\(144\) 0 0
\(145\) −1049.99 + 1049.99i −0.601356 + 0.601356i
\(146\) 0 0
\(147\) 1063.51 2567.53i 0.596712 1.44059i
\(148\) 0 0
\(149\) 1889.71i 1.03900i −0.854470 0.519501i \(-0.826118\pi\)
0.854470 0.519501i \(-0.173882\pi\)
\(150\) 0 0
\(151\) −798.283 798.283i −0.430221 0.430221i 0.458483 0.888703i \(-0.348393\pi\)
−0.888703 + 0.458483i \(0.848393\pi\)
\(152\) 0 0
\(153\) 3017.55 + 1080.25i 1.59448 + 0.570805i
\(154\) 0 0
\(155\) −799.324 799.324i −0.414214 0.414214i
\(156\) 0 0
\(157\) 2012.97i 1.02327i 0.859204 + 0.511633i \(0.170959\pi\)
−0.859204 + 0.511633i \(0.829041\pi\)
\(158\) 0 0
\(159\) −2370.40 + 5722.65i −1.18229 + 2.85431i
\(160\) 0 0
\(161\) −114.953 + 114.953i −0.0562705 + 0.0562705i
\(162\) 0 0
\(163\) 2587.43 + 1071.75i 1.24333 + 0.515005i 0.904754 0.425934i \(-0.140054\pi\)
0.338577 + 0.940939i \(0.390054\pi\)
\(164\) 0 0
\(165\) 148.494 61.5084i 0.0700623 0.0290208i
\(166\) 0 0
\(167\) −799.170 1929.37i −0.370309 0.894006i −0.993698 0.112093i \(-0.964244\pi\)
0.623388 0.781912i \(-0.285756\pi\)
\(168\) 0 0
\(169\) −1259.10 −0.573098
\(170\) 0 0
\(171\) 3815.87 1.70647
\(172\) 0 0
\(173\) 366.123 + 883.898i 0.160901 + 0.388448i 0.983684 0.179907i \(-0.0575798\pi\)
−0.822783 + 0.568356i \(0.807580\pi\)
\(174\) 0 0
\(175\) −139.778 + 57.8981i −0.0603786 + 0.0250096i
\(176\) 0 0
\(177\) 4997.41 + 2070.00i 2.12219 + 0.879042i
\(178\) 0 0
\(179\) 2960.01 2960.01i 1.23599 1.23599i 0.274359 0.961627i \(-0.411534\pi\)
0.961627 0.274359i \(-0.0884658\pi\)
\(180\) 0 0
\(181\) −178.074 + 429.907i −0.0731276 + 0.176546i −0.956217 0.292660i \(-0.905460\pi\)
0.883089 + 0.469206i \(0.155460\pi\)
\(182\) 0 0
\(183\) 5265.84i 2.12711i
\(184\) 0 0
\(185\) −2246.08 2246.08i −0.892622 0.892622i
\(186\) 0 0
\(187\) 140.309 6.87008i 0.0548686 0.00268658i
\(188\) 0 0
\(189\) −467.263 467.263i −0.179833 0.179833i
\(190\) 0 0
\(191\) 2273.42i 0.861249i −0.902531 0.430625i \(-0.858293\pi\)
0.902531 0.430625i \(-0.141707\pi\)
\(192\) 0 0
\(193\) 401.207 968.600i 0.149635 0.361250i −0.831233 0.555924i \(-0.812365\pi\)
0.980868 + 0.194673i \(0.0623647\pi\)
\(194\) 0 0
\(195\) 3333.80 3333.80i 1.22430 1.22430i
\(196\) 0 0
\(197\) −2918.69 1208.96i −1.05557 0.437233i −0.213695 0.976900i \(-0.568550\pi\)
−0.841878 + 0.539668i \(0.818550\pi\)
\(198\) 0 0
\(199\) −879.632 + 364.356i −0.313344 + 0.129791i −0.533813 0.845603i \(-0.679241\pi\)
0.220469 + 0.975394i \(0.429241\pi\)
\(200\) 0 0
\(201\) 2325.41 + 5614.05i 0.816030 + 1.97007i
\(202\) 0 0
\(203\) 653.372 0.225900
\(204\) 0 0
\(205\) −2556.20 −0.870892
\(206\) 0 0
\(207\) −687.484 1659.73i −0.230838 0.557292i
\(208\) 0 0
\(209\) 154.517 64.0030i 0.0511395 0.0211827i
\(210\) 0 0
\(211\) −4359.11 1805.60i −1.42224 0.589113i −0.466821 0.884352i \(-0.654601\pi\)
−0.955423 + 0.295239i \(0.904601\pi\)
\(212\) 0 0
\(213\) 5006.68 5006.68i 1.61057 1.61057i
\(214\) 0 0
\(215\) 860.917 2078.44i 0.273089 0.659295i
\(216\) 0 0
\(217\) 497.393i 0.155600i
\(218\) 0 0
\(219\) −3076.88 3076.88i −0.949390 0.949390i
\(220\) 0 0
\(221\) 3725.32 1761.20i 1.13390 0.536069i
\(222\) 0 0
\(223\) 2751.96 + 2751.96i 0.826390 + 0.826390i 0.987015 0.160625i \(-0.0513511\pi\)
−0.160625 + 0.987015i \(0.551351\pi\)
\(224\) 0 0
\(225\) 1671.91i 0.495381i
\(226\) 0 0
\(227\) 1146.57 2768.07i 0.335245 0.809354i −0.662913 0.748696i \(-0.730680\pi\)
0.998159 0.0606576i \(-0.0193198\pi\)
\(228\) 0 0
\(229\) −2777.16 + 2777.16i −0.801398 + 0.801398i −0.983314 0.181916i \(-0.941770\pi\)
0.181916 + 0.983314i \(0.441770\pi\)
\(230\) 0 0
\(231\) −65.3390 27.0643i −0.0186103 0.00770865i
\(232\) 0 0
\(233\) 2603.32 1078.33i 0.731970 0.303192i 0.0146085 0.999893i \(-0.495350\pi\)
0.717361 + 0.696702i \(0.245350\pi\)
\(234\) 0 0
\(235\) −540.731 1305.44i −0.150100 0.362372i
\(236\) 0 0
\(237\) 2555.75 0.700480
\(238\) 0 0
\(239\) −4737.45 −1.28218 −0.641089 0.767467i \(-0.721517\pi\)
−0.641089 + 0.767467i \(0.721517\pi\)
\(240\) 0 0
\(241\) 1529.50 + 3692.53i 0.408811 + 0.986958i 0.985451 + 0.169959i \(0.0543637\pi\)
−0.576640 + 0.816999i \(0.695636\pi\)
\(242\) 0 0
\(243\) −2980.75 + 1234.67i −0.786894 + 0.325942i
\(244\) 0 0
\(245\) 2831.30 + 1172.76i 0.738307 + 0.305817i
\(246\) 0 0
\(247\) 3469.01 3469.01i 0.893635 0.893635i
\(248\) 0 0
\(249\) 2004.64 4839.64i 0.510197 1.23172i
\(250\) 0 0
\(251\) 6549.14i 1.64693i 0.567370 + 0.823463i \(0.307961\pi\)
−0.567370 + 0.823463i \(0.692039\pi\)
\(252\) 0 0
\(253\) −55.6769 55.6769i −0.0138355 0.0138355i
\(254\) 0 0
\(255\) −1894.61 + 5292.37i −0.465276 + 1.29969i
\(256\) 0 0
\(257\) −724.767 724.767i −0.175913 0.175913i 0.613658 0.789572i \(-0.289697\pi\)
−0.789572 + 0.613658i \(0.789697\pi\)
\(258\) 0 0
\(259\) 1397.66i 0.335315i
\(260\) 0 0
\(261\) −2763.05 + 6670.59i −0.655281 + 1.58199i
\(262\) 0 0
\(263\) −1014.00 + 1014.00i −0.237741 + 0.237741i −0.815914 0.578173i \(-0.803766\pi\)
0.578173 + 0.815914i \(0.303766\pi\)
\(264\) 0 0
\(265\) −6310.55 2613.92i −1.46285 0.605931i
\(266\) 0 0
\(267\) −9995.19 + 4140.14i −2.29099 + 0.948961i
\(268\) 0 0
\(269\) 482.139 + 1163.99i 0.109281 + 0.263827i 0.969054 0.246849i \(-0.0793951\pi\)
−0.859773 + 0.510676i \(0.829395\pi\)
\(270\) 0 0
\(271\) −546.986 −0.122609 −0.0613044 0.998119i \(-0.519526\pi\)
−0.0613044 + 0.998119i \(0.519526\pi\)
\(272\) 0 0
\(273\) −2074.52 −0.459910
\(274\) 0 0
\(275\) −28.0427 67.7010i −0.00614923 0.0148455i
\(276\) 0 0
\(277\) 6894.80 2855.92i 1.49555 0.619479i 0.523037 0.852310i \(-0.324799\pi\)
0.972517 + 0.232831i \(0.0747990\pi\)
\(278\) 0 0
\(279\) −5078.12 2103.43i −1.08967 0.451358i
\(280\) 0 0
\(281\) 3156.53 3156.53i 0.670116 0.670116i −0.287626 0.957743i \(-0.592866\pi\)
0.957743 + 0.287626i \(0.0928662\pi\)
\(282\) 0 0
\(283\) −2271.60 + 5484.13i −0.477147 + 1.15193i 0.483794 + 0.875182i \(0.339258\pi\)
−0.960941 + 0.276753i \(0.910742\pi\)
\(284\) 0 0
\(285\) 6692.52i 1.39098i
\(286\) 0 0
\(287\) 795.321 + 795.321i 0.163576 + 0.163576i
\(288\) 0 0
\(289\) −3118.01 + 3796.79i −0.634645 + 0.772804i
\(290\) 0 0
\(291\) −6198.57 6198.57i −1.24868 1.24868i
\(292\) 0 0
\(293\) 670.673i 0.133724i 0.997762 + 0.0668620i \(0.0212987\pi\)
−0.997762 + 0.0668620i \(0.978701\pi\)
\(294\) 0 0
\(295\) −2282.65 + 5510.81i −0.450512 + 1.08763i
\(296\) 0 0
\(297\) 226.317 226.317i 0.0442162 0.0442162i
\(298\) 0 0
\(299\) −2133.86 883.872i −0.412723 0.170955i
\(300\) 0 0
\(301\) −914.532 + 378.812i −0.175125 + 0.0725394i
\(302\) 0 0
\(303\) 174.648 + 421.638i 0.0331132 + 0.0799422i
\(304\) 0 0
\(305\) −5806.81 −1.09015
\(306\) 0 0
\(307\) 9301.80 1.72926 0.864628 0.502412i \(-0.167554\pi\)
0.864628 + 0.502412i \(0.167554\pi\)
\(308\) 0 0
\(309\) 4451.57 + 10747.0i 0.819550 + 1.97857i
\(310\) 0 0
\(311\) 8381.82 3471.86i 1.52826 0.633027i 0.549036 0.835799i \(-0.314995\pi\)
0.979226 + 0.202772i \(0.0649951\pi\)
\(312\) 0 0
\(313\) −3184.82 1319.20i −0.575133 0.238228i 0.0761069 0.997100i \(-0.475751\pi\)
−0.651240 + 0.758872i \(0.725751\pi\)
\(314\) 0 0
\(315\) 1258.19 1258.19i 0.225050 0.225050i
\(316\) 0 0
\(317\) 2319.16 5598.96i 0.410906 0.992015i −0.573989 0.818863i \(-0.694605\pi\)
0.984895 0.173152i \(-0.0553952\pi\)
\(318\) 0 0
\(319\) 316.458i 0.0555430i
\(320\) 0 0
\(321\) −3235.17 3235.17i −0.562523 0.562523i
\(322\) 0 0
\(323\) −1971.45 + 5507.02i −0.339612 + 0.948665i
\(324\) 0 0
\(325\) −1519.93 1519.93i −0.259418 0.259418i
\(326\) 0 0
\(327\) 11594.9i 1.96086i
\(328\) 0 0
\(329\) −237.927 + 574.406i −0.0398703 + 0.0962553i
\(330\) 0 0
\(331\) 7711.44 7711.44i 1.28054 1.28054i 0.340181 0.940360i \(-0.389512\pi\)
0.940360 0.340181i \(-0.110488\pi\)
\(332\) 0 0
\(333\) −14269.4 5910.58i −2.34822 0.972666i
\(334\) 0 0
\(335\) −6190.79 + 2564.31i −1.00967 + 0.418219i
\(336\) 0 0
\(337\) −1371.34 3310.71i −0.221667 0.535151i 0.773450 0.633858i \(-0.218529\pi\)
−0.995117 + 0.0987066i \(0.968529\pi\)
\(338\) 0 0
\(339\) 11000.1 1.76236
\(340\) 0 0
\(341\) −240.910 −0.0382581
\(342\) 0 0
\(343\) −1059.17 2557.06i −0.166734 0.402531i
\(344\) 0 0
\(345\) 2910.94 1205.75i 0.454261 0.188161i
\(346\) 0 0
\(347\) −4688.70 1942.12i −0.725368 0.300457i −0.0107211 0.999943i \(-0.503413\pi\)
−0.714647 + 0.699485i \(0.753413\pi\)
\(348\) 0 0
\(349\) −135.360 + 135.360i −0.0207612 + 0.0207612i −0.717411 0.696650i \(-0.754673\pi\)
0.696650 + 0.717411i \(0.254673\pi\)
\(350\) 0 0
\(351\) 3592.78 8673.75i 0.546349 1.31900i
\(352\) 0 0
\(353\) 2272.17i 0.342594i −0.985219 0.171297i \(-0.945204\pi\)
0.985219 0.171297i \(-0.0547958\pi\)
\(354\) 0 0
\(355\) 5521.03 + 5521.03i 0.825425 + 0.825425i
\(356\) 0 0
\(357\) 2236.11 1057.16i 0.331506 0.156725i
\(358\) 0 0
\(359\) 6256.65 + 6256.65i 0.919814 + 0.919814i 0.997015 0.0772017i \(-0.0245985\pi\)
−0.0772017 + 0.997015i \(0.524599\pi\)
\(360\) 0 0
\(361\) 104.949i 0.0153009i
\(362\) 0 0
\(363\) −4330.63 + 10455.1i −0.626168 + 1.51170i
\(364\) 0 0
\(365\) 3392.98 3392.98i 0.486566 0.486566i
\(366\) 0 0
\(367\) −2199.50 911.061i −0.312841 0.129583i 0.220738 0.975333i \(-0.429153\pi\)
−0.533579 + 0.845750i \(0.679153\pi\)
\(368\) 0 0
\(369\) −11483.1 + 4756.48i −1.62002 + 0.671036i
\(370\) 0 0
\(371\) 1150.15 + 2776.70i 0.160951 + 0.388569i
\(372\) 0 0
\(373\) 6927.12 0.961589 0.480794 0.876833i \(-0.340348\pi\)
0.480794 + 0.876833i \(0.340348\pi\)
\(374\) 0 0
\(375\) 12957.0 1.78426
\(376\) 0 0
\(377\) 3552.34 + 8576.12i 0.485292 + 1.17160i
\(378\) 0 0
\(379\) 11598.2 4804.15i 1.57193 0.651115i 0.584821 0.811162i \(-0.301165\pi\)
0.987109 + 0.160047i \(0.0511646\pi\)
\(380\) 0 0
\(381\) −8361.18 3463.32i −1.12429 0.465698i
\(382\) 0 0
\(383\) −3611.03 + 3611.03i −0.481763 + 0.481763i −0.905694 0.423931i \(-0.860650\pi\)
0.423931 + 0.905694i \(0.360650\pi\)
\(384\) 0 0
\(385\) 29.8447 72.0514i 0.00395071 0.00953787i
\(386\) 0 0
\(387\) 10938.9i 1.43683i
\(388\) 0 0
\(389\) 7057.17 + 7057.17i 0.919827 + 0.919827i 0.997016 0.0771892i \(-0.0245946\pi\)
−0.0771892 + 0.997016i \(0.524595\pi\)
\(390\) 0 0
\(391\) 2750.49 134.674i 0.355750 0.0174189i
\(392\) 0 0
\(393\) 6.97281 + 6.97281i 0.000894992 + 0.000894992i
\(394\) 0 0
\(395\) 2818.31i 0.358999i
\(396\) 0 0
\(397\) −1268.43 + 3062.27i −0.160355 + 0.387130i −0.983552 0.180625i \(-0.942188\pi\)
0.823197 + 0.567755i \(0.192188\pi\)
\(398\) 0 0
\(399\) 2082.27 2082.27i 0.261263 0.261263i
\(400\) 0 0
\(401\) −7808.06 3234.20i −0.972359 0.402764i −0.160769 0.986992i \(-0.551397\pi\)
−0.811590 + 0.584228i \(0.801397\pi\)
\(402\) 0 0
\(403\) −6528.75 + 2704.30i −0.806998 + 0.334269i
\(404\) 0 0
\(405\) 458.075 + 1105.89i 0.0562023 + 0.135684i
\(406\) 0 0
\(407\) −676.951 −0.0824453
\(408\) 0 0
\(409\) −44.1623 −0.00533908 −0.00266954 0.999996i \(-0.500850\pi\)
−0.00266954 + 0.999996i \(0.500850\pi\)
\(410\) 0 0
\(411\) 1897.64 + 4581.30i 0.227746 + 0.549827i
\(412\) 0 0
\(413\) 2424.81 1004.39i 0.288903 0.119668i
\(414\) 0 0
\(415\) 5336.82 + 2210.58i 0.631263 + 0.261478i
\(416\) 0 0
\(417\) 15203.1 15203.1i 1.78537 1.78537i
\(418\) 0 0
\(419\) −4406.74 + 10638.8i −0.513803 + 1.24043i 0.427851 + 0.903849i \(0.359271\pi\)
−0.941654 + 0.336582i \(0.890729\pi\)
\(420\) 0 0
\(421\) 10857.1i 1.25688i 0.777860 + 0.628438i \(0.216305\pi\)
−0.777860 + 0.628438i \(0.783695\pi\)
\(422\) 0 0
\(423\) −4858.22 4858.22i −0.558427 0.558427i
\(424\) 0 0
\(425\) 2412.88 + 863.785i 0.275393 + 0.0985876i
\(426\) 0 0
\(427\) 1806.69 + 1806.69i 0.204759 + 0.204759i
\(428\) 0 0
\(429\) 1004.78i 0.113080i
\(430\) 0 0
\(431\) 659.646 1592.53i 0.0737217 0.177980i −0.882723 0.469894i \(-0.844292\pi\)
0.956445 + 0.291914i \(0.0942921\pi\)
\(432\) 0 0
\(433\) 1599.38 1599.38i 0.177509 0.177509i −0.612760 0.790269i \(-0.709941\pi\)
0.790269 + 0.612760i \(0.209941\pi\)
\(434\) 0 0
\(435\) −11699.3 4846.01i −1.28951 0.534134i
\(436\) 0 0
\(437\) 3029.00 1254.65i 0.331572 0.137342i
\(438\) 0 0
\(439\) 2989.68 + 7217.72i 0.325033 + 0.784700i 0.998947 + 0.0458893i \(0.0146121\pi\)
−0.673913 + 0.738810i \(0.735388\pi\)
\(440\) 0 0
\(441\) 14901.2 1.60903
\(442\) 0 0
\(443\) 4323.15 0.463654 0.231827 0.972757i \(-0.425530\pi\)
0.231827 + 0.972757i \(0.425530\pi\)
\(444\) 0 0
\(445\) −4565.47 11022.0i −0.486346 1.17414i
\(446\) 0 0
\(447\) 14888.7 6167.10i 1.57542 0.652559i
\(448\) 0 0
\(449\) 1417.69 + 587.227i 0.149009 + 0.0617215i 0.455941 0.890010i \(-0.349303\pi\)
−0.306933 + 0.951731i \(0.599303\pi\)
\(450\) 0 0
\(451\) −385.210 + 385.210i −0.0402191 + 0.0402191i
\(452\) 0 0
\(453\) 3684.32 8894.74i 0.382129 0.922541i
\(454\) 0 0
\(455\) 2287.64i 0.235705i
\(456\) 0 0
\(457\) −8699.98 8699.98i −0.890521 0.890521i 0.104051 0.994572i \(-0.466819\pi\)
−0.994572 + 0.104051i \(0.966819\pi\)
\(458\) 0 0
\(459\) 547.428 + 11180.3i 0.0556683 + 1.13693i
\(460\) 0 0
\(461\) −1886.57 1886.57i −0.190600 0.190600i 0.605356 0.795955i \(-0.293031\pi\)
−0.795955 + 0.605356i \(0.793031\pi\)
\(462\) 0 0
\(463\) 15499.8i 1.55580i −0.628388 0.777900i \(-0.716285\pi\)
0.628388 0.777900i \(-0.283715\pi\)
\(464\) 0 0
\(465\) 3689.12 8906.33i 0.367912 0.888218i
\(466\) 0 0
\(467\) −8780.53 + 8780.53i −0.870053 + 0.870053i −0.992478 0.122425i \(-0.960933\pi\)
0.122425 + 0.992478i \(0.460933\pi\)
\(468\) 0 0
\(469\) 2724.01 + 1128.32i 0.268194 + 0.111090i
\(470\) 0 0
\(471\) −15859.8 + 6569.36i −1.55156 + 0.642676i
\(472\) 0 0
\(473\) −183.476 442.950i −0.0178356 0.0430589i
\(474\) 0 0
\(475\) 3051.23 0.294737
\(476\) 0 0
\(477\) −33212.6 −3.18805
\(478\) 0 0
\(479\) 2853.09 + 6887.97i 0.272153 + 0.657035i 0.999575 0.0291555i \(-0.00928180\pi\)
−0.727422 + 0.686190i \(0.759282\pi\)
\(480\) 0 0
\(481\) −18345.6 + 7599.01i −1.73906 + 0.720343i
\(482\) 0 0
\(483\) −1280.84 530.542i −0.120663 0.0499804i
\(484\) 0 0
\(485\) 6835.37 6835.37i 0.639955 0.639955i
\(486\) 0 0
\(487\) 4184.79 10103.0i 0.389386 0.940060i −0.600684 0.799486i \(-0.705105\pi\)
0.990070 0.140574i \(-0.0448948\pi\)
\(488\) 0 0
\(489\) 23883.5i 2.20869i
\(490\) 0 0
\(491\) −3887.69 3887.69i −0.357330 0.357330i 0.505498 0.862828i \(-0.331309\pi\)
−0.862828 + 0.505498i \(0.831309\pi\)
\(492\) 0 0
\(493\) −8199.39 7433.92i −0.749050 0.679122i
\(494\) 0 0
\(495\) 609.397 + 609.397i 0.0553341 + 0.0553341i
\(496\) 0 0
\(497\) 3435.55i 0.310072i
\(498\) 0 0
\(499\) −321.208 + 775.465i −0.0288161 + 0.0695683i −0.937633 0.347628i \(-0.886987\pi\)
0.908816 + 0.417196i \(0.136987\pi\)
\(500\) 0 0
\(501\) 12593.0 12593.0i 1.12298 1.12298i
\(502\) 0 0
\(503\) −10146.9 4202.98i −0.899458 0.372568i −0.115446 0.993314i \(-0.536830\pi\)
−0.784012 + 0.620746i \(0.786830\pi\)
\(504\) 0 0
\(505\) −464.954 + 192.590i −0.0409707 + 0.0169706i
\(506\) 0 0
\(507\) −4109.08 9920.20i −0.359942 0.868977i
\(508\) 0 0
\(509\) −2774.81 −0.241633 −0.120817 0.992675i \(-0.538551\pi\)
−0.120817 + 0.992675i \(0.538551\pi\)
\(510\) 0 0
\(511\) −2111.34 −0.182779
\(512\) 0 0
\(513\) 5099.95 + 12312.4i 0.438924 + 1.05966i
\(514\) 0 0
\(515\) −11851.1 + 4908.89i −1.01402 + 0.420022i
\(516\) 0 0
\(517\) −278.211 115.239i −0.0236667 0.00980308i
\(518\) 0 0
\(519\) −5769.23 + 5769.23i −0.487940 + 0.487940i
\(520\) 0 0
\(521\) −6004.69 + 14496.6i −0.504933 + 1.21902i 0.441834 + 0.897097i \(0.354328\pi\)
−0.946767 + 0.321919i \(0.895672\pi\)
\(522\) 0 0
\(523\) 5670.76i 0.474121i 0.971495 + 0.237060i \(0.0761839\pi\)
−0.971495 + 0.237060i \(0.923816\pi\)
\(524\) 0 0
\(525\) −912.337 912.337i −0.0758432 0.0758432i
\(526\) 0 0
\(527\) 5659.23 6241.95i 0.467779 0.515946i
\(528\) 0 0
\(529\) 7511.93 + 7511.93i 0.617402 + 0.617402i
\(530\) 0 0
\(531\) 29003.5i 2.37033i
\(532\) 0 0
\(533\) −6115.22 + 14763.4i −0.496960 + 1.19977i
\(534\) 0 0
\(535\) 3567.53 3567.53i 0.288295 0.288295i
\(536\) 0 0
\(537\) 32981.4 + 13661.4i 2.65038 + 1.09782i
\(538\) 0 0
\(539\) 603.397 249.935i 0.0482192 0.0199731i
\(540\) 0 0
\(541\) −290.049 700.240i −0.0230502 0.0556482i 0.911935 0.410334i \(-0.134588\pi\)
−0.934986 + 0.354686i \(0.884588\pi\)
\(542\) 0 0
\(543\) −3968.31 −0.313621
\(544\) 0 0
\(545\) 12786.1 1.00495
\(546\) 0 0
\(547\) −972.432 2347.66i −0.0760113 0.183508i 0.881306 0.472545i \(-0.156665\pi\)
−0.957318 + 0.289038i \(0.906665\pi\)
\(548\) 0 0
\(549\) −26085.8 + 10805.1i −2.02789 + 0.839980i
\(550\) 0 0
\(551\) −12173.8 5042.55i −0.941235 0.389872i
\(552\) 0 0
\(553\) 876.870 876.870i 0.0674292 0.0674292i
\(554\) 0 0
\(555\) 10366.3 25026.6i 0.792841 1.91409i
\(556\) 0 0
\(557\) 17606.6i 1.33934i 0.742657 + 0.669672i \(0.233565\pi\)
−0.742657 + 0.669672i \(0.766435\pi\)
\(558\) 0 0
\(559\) −9944.52 9944.52i −0.752430 0.752430i
\(560\) 0 0
\(561\) 512.030 + 1083.05i 0.0385346 + 0.0815089i
\(562\) 0 0
\(563\) 5286.50 + 5286.50i 0.395736 + 0.395736i 0.876726 0.480990i \(-0.159723\pi\)
−0.480990 + 0.876726i \(0.659723\pi\)
\(564\) 0 0
\(565\) 12130.1i 0.903218i
\(566\) 0 0
\(567\) 201.557 486.602i 0.0149288 0.0360412i
\(568\) 0 0
\(569\) −12145.4 + 12145.4i −0.894833 + 0.894833i −0.994973 0.100141i \(-0.968071\pi\)
0.100141 + 0.994973i \(0.468071\pi\)
\(570\) 0 0
\(571\) −13625.2 5643.73i −0.998591 0.413630i −0.177311 0.984155i \(-0.556740\pi\)
−0.821280 + 0.570525i \(0.806740\pi\)
\(572\) 0 0
\(573\) 17911.8 7419.32i 1.30589 0.540919i
\(574\) 0 0
\(575\) −549.722 1327.15i −0.0398696 0.0962536i
\(576\) 0 0
\(577\) −21154.7 −1.52631 −0.763156 0.646214i \(-0.776351\pi\)
−0.763156 + 0.646214i \(0.776351\pi\)
\(578\) 0 0
\(579\) 8940.77 0.641737
\(580\) 0 0
\(581\) −972.678 2348.25i −0.0694552 0.167680i
\(582\) 0 0
\(583\) −1344.88 + 557.069i −0.0955392 + 0.0395736i
\(584\) 0 0
\(585\) 23355.6 + 9674.20i 1.65066 + 0.683724i
\(586\) 0 0
\(587\) 199.666 199.666i 0.0140393 0.0140393i −0.700052 0.714092i \(-0.746840\pi\)
0.714092 + 0.700052i \(0.246840\pi\)
\(588\) 0 0
\(589\) 3838.74 9267.55i 0.268544 0.648324i
\(590\) 0 0
\(591\) 26941.3i 1.87515i
\(592\) 0 0
\(593\) −18956.7 18956.7i −1.31275 1.31275i −0.919382 0.393365i \(-0.871311\pi\)
−0.393365 0.919382i \(-0.628689\pi\)
\(594\) 0 0
\(595\) 1165.76 + 2465.83i 0.0803220 + 0.169898i
\(596\) 0 0
\(597\) −5741.38 5741.38i −0.393600 0.393600i
\(598\) 0 0
\(599\) 24971.8i 1.70337i 0.524050 + 0.851687i \(0.324420\pi\)
−0.524050 + 0.851687i \(0.675580\pi\)
\(600\) 0 0
\(601\) 5017.08 12112.3i 0.340518 0.822082i −0.657146 0.753763i \(-0.728236\pi\)
0.997664 0.0683189i \(-0.0217635\pi\)
\(602\) 0 0
\(603\) −23039.1 + 23039.1i −1.55593 + 1.55593i
\(604\) 0 0
\(605\) −11529.1 4775.52i −0.774754 0.320914i
\(606\) 0 0
\(607\) 20011.0 8288.83i 1.33809 0.554256i 0.405139 0.914255i \(-0.367223\pi\)
0.932952 + 0.360000i \(0.117223\pi\)
\(608\) 0 0
\(609\) 2132.29 + 5147.80i 0.141880 + 0.342528i
\(610\) 0 0
\(611\) −8833.21 −0.584866
\(612\) 0 0
\(613\) 13819.3 0.910535 0.455268 0.890355i \(-0.349544\pi\)
0.455268 + 0.890355i \(0.349544\pi\)
\(614\) 0 0
\(615\) −8342.20 20139.9i −0.546976 1.32052i
\(616\) 0 0
\(617\) 6287.22 2604.25i 0.410233 0.169924i −0.168016 0.985784i \(-0.553736\pi\)
0.578249 + 0.815860i \(0.303736\pi\)
\(618\) 0 0
\(619\) 9034.41 + 3742.17i 0.586629 + 0.242990i 0.656200 0.754587i \(-0.272163\pi\)
−0.0695706 + 0.997577i \(0.522163\pi\)
\(620\) 0 0
\(621\) 4436.50 4436.50i 0.286684 0.286684i
\(622\) 0 0
\(623\) −2008.85 + 4849.79i −0.129186 + 0.311882i
\(624\) 0 0
\(625\) 9717.69i 0.621932i
\(626\) 0 0
\(627\) 1008.54 + 1008.54i 0.0642378 + 0.0642378i
\(628\) 0 0
\(629\) 15902.3 17539.7i 1.00805 1.11185i
\(630\) 0 0
\(631\) −10905.1 10905.1i −0.687993 0.687993i 0.273795 0.961788i \(-0.411721\pi\)
−0.961788 + 0.273795i \(0.911721\pi\)
\(632\) 0 0
\(633\) 40237.3i 2.52652i
\(634\) 0 0
\(635\) 3819.11 9220.15i 0.238672 0.576205i
\(636\) 0 0
\(637\) 13546.7 13546.7i 0.842605 0.842605i
\(638\) 0 0
\(639\) 35075.2 + 14528.6i 2.17145 + 0.899443i
\(640\) 0 0
\(641\) −68.6209 + 28.4237i −0.00422833 + 0.00175143i −0.384797 0.923001i \(-0.625728\pi\)
0.380568 + 0.924753i \(0.375728\pi\)
\(642\) 0 0
\(643\) −2711.95 6547.22i −0.166328 0.401551i 0.818636 0.574313i \(-0.194731\pi\)
−0.984964 + 0.172762i \(0.944731\pi\)
\(644\) 0 0
\(645\) 19185.3 1.17119
\(646\) 0 0
\(647\) −11222.7 −0.681932 −0.340966 0.940076i \(-0.610754\pi\)
−0.340966 + 0.940076i \(0.610754\pi\)
\(648\) 0 0
\(649\) 486.471 + 1174.44i 0.0294232 + 0.0710338i
\(650\) 0 0
\(651\) −3918.87 + 1623.25i −0.235933 + 0.0977268i
\(652\) 0 0
\(653\) 17536.7 + 7263.94i 1.05094 + 0.435314i 0.840228 0.542234i \(-0.182421\pi\)
0.210714 + 0.977548i \(0.432421\pi\)
\(654\) 0 0
\(655\) −7.68915 + 7.68915i −0.000458687 + 0.000458687i
\(656\) 0 0
\(657\) 8928.65 21555.7i 0.530198 1.28001i
\(658\) 0 0
\(659\) 26196.7i 1.54853i −0.632864 0.774263i \(-0.718121\pi\)
0.632864 0.774263i \(-0.281879\pi\)
\(660\) 0 0
\(661\) −4766.21 4766.21i −0.280460 0.280460i 0.552832 0.833292i \(-0.313547\pi\)
−0.833292 + 0.552832i \(0.813547\pi\)
\(662\) 0 0
\(663\) 26033.8 + 23603.4i 1.52499 + 1.38262i
\(664\) 0 0
\(665\) 2296.18 + 2296.18i 0.133898 + 0.133898i
\(666\) 0 0
\(667\) 6203.54i 0.360123i
\(668\) 0 0
\(669\) −12701.1 + 30663.3i −0.734013 + 1.77206i
\(670\) 0 0
\(671\) −875.064 + 875.064i −0.0503450 + 0.0503450i
\(672\) 0 0
\(673\) 6588.41 + 2729.01i 0.377362 + 0.156308i 0.563299 0.826253i \(-0.309532\pi\)
−0.185937 + 0.982562i \(0.559532\pi\)
\(674\) 0 0
\(675\) 5394.62 2234.52i 0.307613 0.127418i
\(676\) 0 0
\(677\) −1644.09 3969.19i −0.0933346 0.225330i 0.870317 0.492492i \(-0.163914\pi\)
−0.963652 + 0.267162i \(0.913914\pi\)
\(678\) 0 0
\(679\) −4253.43 −0.240400
\(680\) 0 0
\(681\) 25551.0 1.43776
\(682\) 0 0
\(683\) −4718.94 11392.5i −0.264371 0.638248i 0.734829 0.678253i \(-0.237263\pi\)
−0.999199 + 0.0400051i \(0.987263\pi\)
\(684\) 0 0
\(685\) −5051.95 + 2092.59i −0.281789 + 0.116721i
\(686\) 0 0
\(687\) −30944.1 12817.5i −1.71847 0.711815i
\(688\) 0 0
\(689\) −30193.5 + 30193.5i −1.66950 + 1.66950i
\(690\) 0 0
\(691\) −9124.08 + 22027.5i −0.502310 + 1.21268i 0.445912 + 0.895077i \(0.352879\pi\)
−0.948222 + 0.317607i \(0.897121\pi\)
\(692\) 0 0
\(693\) 379.208i 0.0207863i
\(694\) 0 0
\(695\) 16764.9 + 16764.9i 0.915008 + 0.915008i
\(696\) 0 0
\(697\) −931.768 19029.7i −0.0506359 1.03415i
\(698\) 0 0
\(699\) 16991.9 + 16991.9i 0.919447 + 0.919447i
\(700\) 0 0
\(701\) 33388.6i 1.79896i 0.436964 + 0.899479i \(0.356054\pi\)
−0.436964 + 0.899479i \(0.643946\pi\)
\(702\) 0 0
\(703\) 10786.8 26041.6i 0.578707 1.39712i
\(704\) 0 0
\(705\) 8520.64 8520.64i 0.455186 0.455186i
\(706\) 0 0
\(707\) 204.584 + 84.7416i 0.0108829 + 0.00450783i
\(708\) 0 0
\(709\) 17467.0 7235.08i 0.925231 0.383243i 0.131363 0.991334i \(-0.458065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(710\) 0 0
\(711\) 5244.19 + 12660.6i 0.276614 + 0.667805i
\(712\) 0 0
\(713\) −4722.57 −0.248053
\(714\) 0 0
\(715\) 1108.01 0.0579539
\(716\) 0 0
\(717\) −15460.7 37325.5i −0.805289 1.94414i
\(718\) 0 0
\(719\) 23990.8 9937.31i 1.24437 0.515437i 0.339296 0.940680i \(-0.389811\pi\)
0.905079 + 0.425243i \(0.139811\pi\)
\(720\) 0 0
\(721\) 5214.60 + 2159.96i 0.269351 + 0.111569i
\(722\) 0 0
\(723\) −24101.3 + 24101.3i −1.23974 + 1.23974i
\(724\) 0 0
\(725\) −2209.37 + 5333.90i −0.113178 + 0.273236i
\(726\) 0 0
\(727\) 3980.23i 0.203052i −0.994833 0.101526i \(-0.967628\pi\)
0.994833 0.101526i \(-0.0323724\pi\)
\(728\) 0 0
\(729\) −21885.6 21885.6i −1.11190 1.11190i
\(730\) 0 0
\(731\) 15786.8 + 5651.51i 0.798764 + 0.285949i
\(732\) 0 0
\(733\) 5827.96 + 5827.96i 0.293671 + 0.293671i 0.838528 0.544858i \(-0.183416\pi\)
−0.544858 + 0.838528i \(0.683416\pi\)
\(734\) 0 0
\(735\) 26134.7i 1.31155i
\(736\) 0 0
\(737\) −546.497 + 1319.36i −0.0273141 + 0.0659420i
\(738\) 0 0
\(739\) −16134.4 + 16134.4i −0.803133 + 0.803133i −0.983584 0.180451i \(-0.942244\pi\)
0.180451 + 0.983584i \(0.442244\pi\)
\(740\) 0 0
\(741\) 38652.9 + 16010.5i 1.91626 + 0.793741i
\(742\) 0 0
\(743\) −14701.2 + 6089.46i −0.725890 + 0.300674i −0.714862 0.699266i \(-0.753510\pi\)
−0.0110283 + 0.999939i \(0.503510\pi\)
\(744\) 0 0
\(745\) 6800.66 + 16418.3i 0.334439 + 0.807407i
\(746\) 0 0
\(747\) 28087.8 1.37574
\(748\) 0 0
\(749\) −2219.96 −0.108298
\(750\) 0 0
\(751\) −12914.0 31177.2i −0.627483 1.51488i −0.842740 0.538321i \(-0.819059\pi\)
0.215257 0.976557i \(-0.430941\pi\)
\(752\) 0 0
\(753\) −51599.5 + 21373.2i −2.49720 + 1.03437i
\(754\) 0 0
\(755\) 9808.51 + 4062.82i 0.472806 + 0.195843i
\(756\) 0 0
\(757\) −12625.8 + 12625.8i −0.606200 + 0.606200i −0.941951 0.335750i \(-0.891010\pi\)
0.335750 + 0.941951i \(0.391010\pi\)
\(758\) 0 0
\(759\) 256.966 620.370i 0.0122889 0.0296680i
\(760\) 0 0
\(761\) 15100.8i 0.719322i −0.933083 0.359661i \(-0.882892\pi\)
0.933083 0.359661i \(-0.117108\pi\)
\(762\) 0 0
\(763\) −3978.19 3978.19i −0.188755 0.188755i
\(764\) 0 0
\(765\) −30104.8 + 1474.04i −1.42280 + 0.0696656i
\(766\) 0 0
\(767\) 26367.1 + 26367.1i 1.24128 + 1.24128i
\(768\) 0 0
\(769\) 22563.7i 1.05809i −0.848595 0.529044i \(-0.822551\pi\)
0.848595 0.529044i \(-0.177449\pi\)
\(770\) 0 0
\(771\) 3345.02 8075.59i 0.156249 0.377218i
\(772\) 0 0
\(773\) −8908.54 + 8908.54i −0.414512 + 0.414512i −0.883307 0.468795i \(-0.844688\pi\)
0.468795 + 0.883307i \(0.344688\pi\)
\(774\) 0 0
\(775\) −4060.54 1681.93i −0.188205 0.0779571i
\(776\) 0 0
\(777\) −11011.9 + 4561.29i −0.508431 + 0.210599i
\(778\) 0 0
\(779\) −8680.54 20956.7i −0.399246 0.963865i
\(780\) 0 0
\(781\) 1664.00 0.0762387
\(782\) 0 0
\(783\) −25216.3 −1.15090
\(784\) 0 0
\(785\) −7244.25 17489.2i −0.329374 0.795179i
\(786\) 0 0
\(787\) 31383.8 12999.6i 1.42149 0.588800i 0.466255 0.884650i \(-0.345603\pi\)
0.955234 + 0.295850i \(0.0956030\pi\)
\(788\) 0 0
\(789\) −11298.3 4679.92i −0.509799 0.211166i
\(790\) 0 0
\(791\) 3774.09 3774.09i 0.169647 0.169647i
\(792\) 0 0
\(793\) −13891.7 + 33537.4i −0.622078 + 1.50183i
\(794\) 0 0
\(795\) 58250.3i 2.59865i
\(796\) 0 0
\(797\) 1470.00 + 1470.00i 0.0653325 + 0.0653325i 0.739018 0.673686i \(-0.235290\pi\)
−0.673686 + 0.739018i \(0.735290\pi\)
\(798\) 0 0
\(799\) 9521.28 4501.34i 0.421576 0.199306i
\(800\) 0 0
\(801\) −41018.6 41018.6i −1.80939 1.80939i
\(802\) 0 0
\(803\) 1022.62i 0.0449407i
\(804\) 0 0
\(805\) 585.046 1412.43i 0.0256151 0.0618404i
\(806\) 0 0
\(807\) −7597.37 + 7597.37i −0.331401 + 0.331401i
\(808\) 0 0
\(809\) −2085.08 863.668i −0.0906150 0.0375339i 0.336916 0.941535i \(-0.390616\pi\)
−0.427530 + 0.904001i \(0.640616\pi\)
\(810\) 0 0
\(811\) 8282.53 3430.74i 0.358618 0.148544i −0.196098 0.980584i \(-0.562827\pi\)
0.554716 + 0.832040i \(0.312827\pi\)
\(812\) 0 0
\(813\) −1785.10 4309.60i −0.0770062 0.185909i
\(814\) 0 0
\(815\) −26337.2 −1.13196
\(816\) 0 0
\(817\) 19963.4 0.854871
\(818\) 0 0
\(819\) −4256.74 10276.7i −0.181615 0.438457i
\(820\) 0 0
\(821\) −12850.2 + 5322.71i −0.546253 + 0.226265i −0.638705 0.769452i \(-0.720529\pi\)
0.0924522 + 0.995717i \(0.470529\pi\)
\(822\) 0 0
\(823\) −16743.5 6935.37i −0.709162 0.293745i −0.00120448 0.999999i \(-0.500383\pi\)
−0.707958 + 0.706255i \(0.750383\pi\)
\(824\) 0 0
\(825\) 441.887 441.887i 0.0186479 0.0186479i
\(826\) 0 0
\(827\) 8981.88 21684.2i 0.377667 0.911768i −0.614736 0.788733i \(-0.710737\pi\)
0.992402 0.123035i \(-0.0392628\pi\)
\(828\) 0 0
\(829\) 43790.8i 1.83464i 0.398149 + 0.917321i \(0.369653\pi\)
−0.398149 + 0.917321i \(0.630347\pi\)
\(830\) 0 0
\(831\) 45002.6 + 45002.6i 1.87861 + 1.87861i
\(832\) 0 0
\(833\) −7698.63 + 21505.2i −0.320218 + 0.894492i
\(834\) 0 0
\(835\) 13886.7 + 13886.7i 0.575534 + 0.575534i
\(836\) 0 0
\(837\) 19196.4i 0.792742i
\(838\) 0 0
\(839\) 4927.55 11896.2i 0.202763 0.489512i −0.789488 0.613766i \(-0.789654\pi\)
0.992250 + 0.124254i \(0.0396537\pi\)
\(840\) 0 0
\(841\) 384.274 384.274i 0.0157560 0.0157560i
\(842\) 0 0
\(843\) 35171.1 + 14568.3i 1.43696 + 0.595208i
\(844\) 0 0
\(845\) 10939.3 4531.22i 0.445354 0.184472i
\(846\) 0 0
\(847\) 2101.28 + 5072.93i 0.0852428 + 0.205794i
\(848\) 0 0
\(849\) −50621.8 −2.04633
\(850\) 0 0
\(851\) −13270.3 −0.534548
\(852\) 0 0
\(853\) 9881.85 + 23856.9i 0.396657 + 0.957614i 0.988453 + 0.151526i \(0.0484189\pi\)
−0.591797 + 0.806087i \(0.701581\pi\)
\(854\) 0 0
\(855\) −33153.2 + 13732.5i −1.32610 + 0.549289i
\(856\) 0 0
\(857\) 15661.0 + 6487.02i 0.624237 + 0.258567i 0.672302 0.740277i \(-0.265306\pi\)
−0.0480652 + 0.998844i \(0.515306\pi\)
\(858\) 0 0
\(859\) 9024.56 9024.56i 0.358456 0.358456i −0.504787 0.863244i \(-0.668429\pi\)
0.863244 + 0.504787i \(0.168429\pi\)
\(860\) 0 0
\(861\) −3670.65 + 8861.73i −0.145291 + 0.350763i
\(862\) 0 0
\(863\) 894.306i 0.0352752i −0.999844 0.0176376i \(-0.994385\pi\)
0.999844 0.0176376i \(-0.00561452\pi\)
\(864\) 0 0
\(865\) −6361.92 6361.92i −0.250071 0.250071i
\(866\) 0 0
\(867\) −40089.9 12175.4i −1.57038 0.476929i
\(868\) 0 0
\(869\) 424.708 + 424.708i 0.0165791 + 0.0165791i
\(870\) 0 0
\(871\) 41889.8i 1.62960i
\(872\) 0 0
\(873\) 17987.3 43425.3i 0.697342 1.68353i
\(874\) 0 0
\(875\) 4445.51 4445.51i 0.171755 0.171755i
\(876\) 0 0
\(877\) −2758.12 1142.45i −0.106198 0.0439885i 0.328952 0.944347i \(-0.393305\pi\)
−0.435150 + 0.900358i \(0.643305\pi\)
\(878\) 0 0
\(879\) −5284.11 + 2188.75i −0.202763 + 0.0839872i
\(880\) 0 0
\(881\) −771.440 1862.42i −0.0295011 0.0712219i 0.908442 0.418010i \(-0.137272\pi\)
−0.937944 + 0.346788i \(0.887272\pi\)
\(882\) 0 0
\(883\) −14631.2 −0.557620 −0.278810 0.960346i \(-0.589940\pi\)
−0.278810 + 0.960346i \(0.589940\pi\)
\(884\) 0 0
\(885\) −50868.1 −1.93211
\(886\) 0 0
\(887\) 15773.5 + 38080.5i 0.597092 + 1.44151i 0.876531 + 0.481345i \(0.159851\pi\)
−0.279439 + 0.960163i \(0.590149\pi\)
\(888\) 0 0
\(889\) −4056.95 + 1680.44i −0.153055 + 0.0633974i
\(890\) 0 0
\(891\) 235.684 + 97.6234i 0.00886161 + 0.00367060i
\(892\) 0 0
\(893\) 8866.22 8866.22i 0.332247 0.332247i
\(894\) 0 0
\(895\) −15064.8 + 36369.7i −0.562638 + 1.35833i
\(896\) 0 0
\(897\) 19696.8i 0.733174i
\(898\) 0 0
\(899\) 13421.1 + 13421.1i 0.497909 + 0.497909i
\(900\) 0 0
\(901\) 17159.1 47931.9i 0.634465 1.77230i
\(902\) 0 0
\(903\) −5969.18 5969.18i −0.219980 0.219980i
\(904\) 0 0
\(905\) 4375.98i 0.160732i
\(906\) 0 0
\(907\) −17837.3 + 43063.1i −0.653008 + 1.57650i 0.155382 + 0.987854i \(0.450339\pi\)
−0.808390 + 0.588647i \(0.799661\pi\)
\(908\) 0 0
\(909\) −1730.34 + 1730.34i −0.0631371 + 0.0631371i
\(910\) 0 0
\(911\) −28055.3 11620.9i −1.02032 0.422631i −0.191111 0.981568i \(-0.561209\pi\)
−0.829210 + 0.558937i \(0.811209\pi\)
\(912\) 0 0
\(913\) 1137.37 471.112i 0.0412281 0.0170773i
\(914\) 0 0
\(915\) −18950.6 45750.8i −0.684686 1.65298i
\(916\) 0 0
\(917\) 4.78470 0.000172306
\(918\) 0 0
\(919\) −4035.91 −0.144867 −0.0724333 0.997373i \(-0.523076\pi\)
−0.0724333 + 0.997373i \(0.523076\pi\)
\(920\) 0 0
\(921\) 30356.5 + 73287.2i 1.08608 + 2.62204i
\(922\) 0 0
\(923\) 45094.9 18678.9i 1.60814 0.666115i
\(924\) 0 0
\(925\) −11410.0 4726.18i −0.405577 0.167996i
\(926\) 0 0
\(927\) −44104.1 + 44104.1i −1.56264 + 1.56264i
\(928\) 0 0
\(929\) −2340.54 + 5650.57i −0.0826595 + 0.199558i −0.959805 0.280666i \(-0.909445\pi\)
0.877146 + 0.480224i \(0.159445\pi\)
\(930\) 0 0
\(931\) 27194.6i 0.957322i
\(932\) 0 0
\(933\) 54708.4 + 54708.4i 1.91969 + 1.91969i
\(934\) 0 0
\(935\) −1194.32 + 564.632i −0.0417736 + 0.0197491i
\(936\) 0 0
\(937\) 22483.0 + 22483.0i 0.783873 + 0.783873i 0.980482 0.196609i \(-0.0629931\pi\)
−0.196609 + 0.980482i \(0.562993\pi\)
\(938\) 0 0
\(939\) 29397.8i 1.02169i
\(940\) 0 0
\(941\) 15721.8 37955.9i 0.544652 1.31491i −0.376757 0.926312i \(-0.622961\pi\)
0.921409 0.388594i \(-0.127039\pi\)
\(942\) 0 0
\(943\) −7551.29 + 7551.29i −0.260768 + 0.260768i
\(944\) 0 0
\(945\) 5741.26 + 2378.11i 0.197633 + 0.0818623i
\(946\) 0 0
\(947\) 37104.1 15369.0i 1.27320 0.527377i 0.359266 0.933235i \(-0.383027\pi\)
0.913936 + 0.405858i \(0.133027\pi\)
\(948\) 0 0
\(949\) −11479.2 27713.3i −0.392657 0.947958i
\(950\) 0 0
\(951\) 51681.8 1.76225
\(952\) 0 0
\(953\) 34421.2 1.17000 0.585002 0.811032i \(-0.301094\pi\)
0.585002 + 0.811032i \(0.301094\pi\)
\(954\) 0 0
\(955\) 8181.53 + 19752.0i 0.277223 + 0.669276i
\(956\) 0 0
\(957\) −2493.31 + 1032.76i −0.0842188 + 0.0348846i
\(958\) 0 0
\(959\) 2222.91 + 920.758i 0.0748502 + 0.0310040i
\(960\) 0 0
\(961\) 10848.3 10848.3i 0.364147 0.364147i
\(962\) 0 0
\(963\) 9387.99 22664.6i 0.314147 0.758419i
\(964\) 0 0
\(965\) 9859.27i 0.328892i
\(966\) 0 0
\(967\) −15110.4 15110.4i −0.502500 0.502500i 0.409714 0.912214i \(-0.365628\pi\)
−0.912214 + 0.409714i \(0.865628\pi\)
\(968\) 0 0
\(969\) −49822.7 + 2439.51i −1.65174 + 0.0808754i
\(970\) 0 0
\(971\) −28513.3 28513.3i −0.942362 0.942362i 0.0560648 0.998427i \(-0.482145\pi\)
−0.998427 + 0.0560648i \(0.982145\pi\)
\(972\) 0 0
\(973\) 10432.3i 0.343724i
\(974\) 0 0
\(975\) 7014.96 16935.6i 0.230419 0.556281i
\(976\) 0 0
\(977\) 30873.7 30873.7i 1.01099 1.01099i 0.0110496 0.999939i \(-0.496483\pi\)
0.999939 0.0110496i \(-0.00351728\pi\)
\(978\) 0 0
\(979\) −2348.97 972.977i −0.0766839 0.0317635i
\(980\) 0 0
\(981\) 57438.7 23791.9i 1.86939 0.774328i
\(982\) 0 0
\(983\) 1772.57 + 4279.37i 0.0575140 + 0.138851i 0.950024 0.312176i \(-0.101058\pi\)
−0.892510 + 0.451027i \(0.851058\pi\)
\(984\) 0 0
\(985\) 29709.0 0.961023
\(986\) 0 0
\(987\) −5302.12 −0.170991
\(988\) 0 0
\(989\) −3596.68 8683.16i −0.115640 0.279180i
\(990\) 0 0
\(991\) −8173.02 + 3385.38i −0.261982 + 0.108517i −0.509809 0.860288i \(-0.670284\pi\)
0.247826 + 0.968805i \(0.420284\pi\)
\(992\) 0 0
\(993\) 85923.5 + 35590.7i 2.74592 + 1.13740i
\(994\) 0 0
\(995\) 6331.21 6331.21i 0.201721 0.201721i
\(996\) 0 0
\(997\) −6197.31 + 14961.6i −0.196861 + 0.475265i −0.991226 0.132175i \(-0.957804\pi\)
0.794365 + 0.607441i \(0.207804\pi\)
\(998\) 0 0
\(999\) 53941.4i 1.70834i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 136.4.n.a.49.6 yes 24
17.5 odd 16 2312.4.a.r.1.2 24
17.8 even 8 inner 136.4.n.a.25.6 24
17.12 odd 16 2312.4.a.r.1.23 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
136.4.n.a.25.6 24 17.8 even 8 inner
136.4.n.a.49.6 yes 24 1.1 even 1 trivial
2312.4.a.r.1.2 24 17.5 odd 16
2312.4.a.r.1.23 24 17.12 odd 16