Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [136,4,Mod(9,136)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(136, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("136.9");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 136 = 2^{3} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 136.n (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.02425976078\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | 0 | −6.48685 | − | 2.68694i | 0 | 1.11556 | − | 2.69319i | 0 | −5.55075 | − | 13.4007i | 0 | 15.7677 | + | 15.7677i | 0 | ||||||||||
9.2 | 0 | −5.30585 | − | 2.19776i | 0 | 0.150111 | − | 0.362401i | 0 | 10.7876 | + | 26.0436i | 0 | 4.23006 | + | 4.23006i | 0 | ||||||||||
9.3 | 0 | −0.101174 | − | 0.0419078i | 0 | −7.97306 | + | 19.2487i | 0 | −12.0163 | − | 29.0099i | 0 | −19.0834 | − | 19.0834i | 0 | ||||||||||
9.4 | 0 | 1.87851 | + | 0.778104i | 0 | 5.60042 | − | 13.5206i | 0 | −3.79791 | − | 9.16896i | 0 | −16.1685 | − | 16.1685i | 0 | ||||||||||
9.5 | 0 | 3.15186 | + | 1.30554i | 0 | −3.77050 | + | 9.10280i | 0 | 7.60539 | + | 18.3610i | 0 | −10.8621 | − | 10.8621i | 0 | ||||||||||
9.6 | 0 | 8.27773 | + | 3.42875i | 0 | 1.41301 | − | 3.41131i | 0 | −0.563571 | − | 1.36058i | 0 | 37.6726 | + | 37.6726i | 0 | ||||||||||
25.1 | 0 | −2.54518 | + | 6.14461i | 0 | 10.5472 | + | 4.36879i | 0 | 17.7372 | − | 7.34700i | 0 | −12.1864 | − | 12.1864i | 0 | ||||||||||
25.2 | 0 | −2.28232 | + | 5.51000i | 0 | −16.4696 | − | 6.82195i | 0 | 15.5753 | − | 6.45152i | 0 | −6.05928 | − | 6.05928i | 0 | ||||||||||
25.3 | 0 | −1.80319 | + | 4.35328i | 0 | 4.35941 | + | 1.80573i | 0 | −26.8148 | + | 11.1071i | 0 | 3.39233 | + | 3.39233i | 0 | ||||||||||
25.4 | 0 | 0.603222 | − | 1.45631i | 0 | −10.3784 | − | 4.29888i | 0 | −13.2154 | + | 5.47398i | 0 | 17.3349 | + | 17.3349i | 0 | ||||||||||
25.5 | 0 | 1.34974 | − | 3.25856i | 0 | 10.0941 | + | 4.18113i | 0 | 6.43022 | − | 2.66348i | 0 | 10.2955 | + | 10.2955i | 0 | ||||||||||
25.6 | 0 | 3.26351 | − | 7.87882i | 0 | −8.68823 | − | 3.59878i | 0 | 3.82290 | − | 1.58350i | 0 | −32.3334 | − | 32.3334i | 0 | ||||||||||
49.1 | 0 | −2.54518 | − | 6.14461i | 0 | 10.5472 | − | 4.36879i | 0 | 17.7372 | + | 7.34700i | 0 | −12.1864 | + | 12.1864i | 0 | ||||||||||
49.2 | 0 | −2.28232 | − | 5.51000i | 0 | −16.4696 | + | 6.82195i | 0 | 15.5753 | + | 6.45152i | 0 | −6.05928 | + | 6.05928i | 0 | ||||||||||
49.3 | 0 | −1.80319 | − | 4.35328i | 0 | 4.35941 | − | 1.80573i | 0 | −26.8148 | − | 11.1071i | 0 | 3.39233 | − | 3.39233i | 0 | ||||||||||
49.4 | 0 | 0.603222 | + | 1.45631i | 0 | −10.3784 | + | 4.29888i | 0 | −13.2154 | − | 5.47398i | 0 | 17.3349 | − | 17.3349i | 0 | ||||||||||
49.5 | 0 | 1.34974 | + | 3.25856i | 0 | 10.0941 | − | 4.18113i | 0 | 6.43022 | + | 2.66348i | 0 | 10.2955 | − | 10.2955i | 0 | ||||||||||
49.6 | 0 | 3.26351 | + | 7.87882i | 0 | −8.68823 | + | 3.59878i | 0 | 3.82290 | + | 1.58350i | 0 | −32.3334 | + | 32.3334i | 0 | ||||||||||
121.1 | 0 | −6.48685 | + | 2.68694i | 0 | 1.11556 | + | 2.69319i | 0 | −5.55075 | + | 13.4007i | 0 | 15.7677 | − | 15.7677i | 0 | ||||||||||
121.2 | 0 | −5.30585 | + | 2.19776i | 0 | 0.150111 | + | 0.362401i | 0 | 10.7876 | − | 26.0436i | 0 | 4.23006 | − | 4.23006i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.d | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 136.4.n.a | ✓ | 24 |
17.d | even | 8 | 1 | inner | 136.4.n.a | ✓ | 24 |
17.e | odd | 16 | 2 | 2312.4.a.r | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.4.n.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
136.4.n.a | ✓ | 24 | 17.d | even | 8 | 1 | inner |
2312.4.a.r | 24 | 17.e | odd | 16 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 8 T_{3}^{22} - 24 T_{3}^{21} + 32 T_{3}^{20} - 3264 T_{3}^{19} + 34688 T_{3}^{18} + \cdots + 5914779649024 \) acting on \(S_{4}^{\mathrm{new}}(136, [\chi])\).